lncRNA-NRF is a Potential Biomarker of Heart Failure After Acute Myocardial Infarction.

J Cardiovasc Transl Res

Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China.

Published: December 2020

Long non-coding RNAs (lncRNAs) are a new focus in cardiovascular diseases. The necrosis-related factor (NRF) is a newly discovered lncRNA, which is increased in myocardial injury. We investigated the role of lncRNA-NRF in heart failure (HF) after acute myocardial infarction (AMI) to find a biomarker for early HF detection. This was a cross-sectional study of 76 AMI patients with HF and 58 AMI patients without HF. lncRNA-NRF was shown to be increased in AMI patients with HF compared with AMI patients without HF and had predictive value for diagnosis of HF. It had a high diagnostic value for HF (AUC, 0.975), while the AUC for N-terminal pro-brain natriuretic peptide was 0.720. Our findings suggest that lncRNA-NRF may represent a marker of risk for development of HF post-AMI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708339PMC
http://dx.doi.org/10.1007/s12265-020-10029-0DOI Listing

Publication Analysis

Top Keywords

ami patients
16
heart failure
8
failure acute
8
acute myocardial
8
myocardial infarction
8
ami
5
lncrna-nrf
4
lncrna-nrf potential
4
potential biomarker
4
biomarker heart
4

Similar Publications

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Severe aortic stenosis (AS) stratified by sex has been increasingly studied in the European population. Sex-specific outcomes in Asian patients with AS remain poorly defined. Hence, we aimed to study the clinical characteristics and impact of sex in moderate-to-severe AS, undergoing both invasive and conservative interventions in an Asian cohort over 10 years.

View Article and Find Full Text PDF

: Takotsubo syndrome (TTS) shares many clinical features with acute myocardial infarction (AMI); however, its underlying pathophysiology remains elusive due to specific characteristics (i.e., reversibility, presence of stressors, and low mortality rate).

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the predictive performance of inflammatory and nutritional indices for adverse cardiovascular events (ACE) in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI) using a machine learning (ML) algorithm.

Methods: AMI patients who underwent PCI were recruited and randomly divided into non/ACE groups. Inflammatory and nutritional indices were graded according to the laboratory examination reports.

View Article and Find Full Text PDF

Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs.

ACS Sens

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!