Hemolysis has been known to affect the measurement of circulating biomarkers. In this study, clinically applicable procedures for microRNA (miRNA) detection in serum samples of acute myocardial infarction patients were established. The 89 samples from patients admitted to the coronary care unit were collected. These samples obtained from heparin-treated and untreated patients were subjected to heparinase digestion prior to miRNA measurements by multiplex RT-qPCR. The good reproducibility of miRNA detection after heparinase digestion (average R = 0.97) indicated that this method can be used routinely for samples regardless of heparin medication. Additionally, the degree of hemolysis in these samples was highly related to the hemoglobin absorbance at 414 nm. Based on the hemoglobin absorbance, five hemolysis-associated miRNAs were identified in our data normalized with respect to both the spike-in control and the RNA amount in a given sample. Using these calibration procedures, miRNAs can be accurately quantified and identified for clinical samples. Graphical Abstract The practical procedures for miRNA detection in serum samples from the coronary care unit were established, and five hemolysis-associated miRNAs were accurately clarified through serial normalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12265-020-10019-2 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China.
Background: Osteoarthritis (OA) is a common type of degenerative arthropathy. Previous studies have demonstrated that circular RNAs (circRNAs) are involved in the progression of OA. This study aimed to investigate the role and associated mechanism of circ_0075048 in OA.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Emergency, Nantong Haimen District People's Hospital, No. 1201 Peking Road, Haimen District, Nantong, 226100, China.
Background: Intracerebral hemorrhage (ICH) is a common subtype of stroke, characterized by a high mortality rate and a tendency to cause neurological damage. This study aims to investigate the role and mechanisms of lncRNA HCP5 in ICH.
Methods: We simulated ICH in vivo by injecting collagenase into rats and established an in vitro model using hemoglobin-treated BV2 cells.
Life Sci
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China. Electronic address:
Aims: Gestational diabetes mellitus (GDM) provides offspring with a hyper-metabolic intrauterine microenvironment. In this study, we aimed to identify key differential microRNAs in GDM-derived exosomes and explore the potential mechanisms of abnormal embryonic development of islets in offspring.
Main Methods: Exosomes were extracted from umbilical vein blood of GDM and non-GDM (NGDM) parturients for microRNA sequencing.
Clin Chim Acta
January 2025
Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil. Electronic address:
Background And Aims: Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China. Electronic address:
Although electrochemical biosensors have been developed to detect multiple microRNAs (miRNAs) simultaneously through loading different capture probes, high surface-induced perturbation and competition among probes have reduced the detection sensitivity. To address these challenges, a trefoil DNA capture probe (TDCP) was designed for microRNA-21 (miR-21) and microRNA-16 (miR-16) detection simultaneously. The TDCP exhibits a stable structure, low spatial resistance, and integral rigidity, which decreases high surface-induced perturbations and competition to improve the accessibility of the target miRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!