Background: Tibial-sided graft fixation is thought to be critical for the success of anterior cruciate ligament (ACL) reconstruction. Nevertheless, little is known about the graft force after fixation during the first 24 hours after surgery or the influence of screw diameter and length during this time.

Purpose: To investigate the force, over the course of 24 hours, in soft tissue grafts secured with a tibial interference screw and to evaluate the effect of different screw diameters (7, 8, and 9 mm) and lengths (25 and 30 mm) on the force in these grafts.

Study Design: Controlled laboratory study.

Methods: Quadruple-strand flexor tendon grafts were fixed with bioabsorbable interference screws in 60 porcine tibiae. Grafts were pretensioned at 80 N over 10 minutes, and screws were inserted outside-in while a preload force of 80 N was applied. Different screw lengths (25 and 30 mm) and diameters (7, 8, and 9 mm), resulting in 6 groups with 10 specimens each, were tested. After release of the preload, graft force was recorded over 24 hours.

Results: A significant decrease in graft force progressed in all groups over the 24-hour period. In total, a median loss of 75 N (IQR, 68-79 N) compared with the initial loading force was observed. Compared with the loading force of 80 N, this corresponded to a median loss of 91%. No significant differences in the remaining graft force could be found among the 6 different screw length and diameter groups after 10 minutes, 100 minutes, or 24 hours.

Conclusion: Graft force in soft tissue grafts secured with a tibial interference screw decreased substantially over the first 24 hours after fixation. Neither the screw diameter nor the screw length affected the decrease in graft force. This raises substantial questions regarding the remaining fixation strength in vivo.

Clinical Relevance: It should not be expected that ACL reconstruction can mechanically restabilize an injured knee as would an intact ACL. Reconstructed knees should be protected from mechanical overload in the early postoperative period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225828PMC
http://dx.doi.org/10.1177/2325967120916437DOI Listing

Publication Analysis

Top Keywords

graft force
28
force
12
soft tissue
12
interference screw
12
screw
9
graft
8
fixation hours
8
acl reconstruction
8
screw diameter
8
tissue grafts
8

Similar Publications

Background: High-level median or ulnar nerve injuries and repairs typically result in suboptimal re-innervation of distal muscles. Functioning Free Muscle Transplantation (FFMT) is increasingly recognized as an effective method to restore function in chronic muscle denervation cases. This study investigates the efficacy of using an additional FFMT, neurotized by lateral sprouting axons from a repaired high-level mixed nerve in the upper limb, to enhance distal hand function.

View Article and Find Full Text PDF

The management of patients with myelodysplastic syndrome (MDS) refractory to hypomethylating agents (HMAs) remains a challenge with few reliably effective treatments. Preclinical studies have shown that the inhibition of the nuclear export protein XPO1 causes nuclear accumulation of p53 and disruption of NF-κB signaling; both of which are relevant targets for MDS. Selinexor is an XPO1 inhibitor with demonstrated efficacy in MDS patients.

View Article and Find Full Text PDF

Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.

Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.

View Article and Find Full Text PDF

Construction of Loop Polyzwitterion Brushes on PET Sheets via the Chain-End Closure Strategy To Improve Antifouling and Hemocompatible Properties.

Langmuir

January 2025

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.

Steric stabilization and lubrication give loop polymer brushes enhanced antifouling properties. In the study, linear zwitterionic poly(NMASMCMS) brushes were first constructed on a poly(ethylene terephthalate) (PET) surface through surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. The tethered linear brushes on sheets were then thiolated with ethanolamine, followed by oxidation to form loop brushes.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) possess unique immunomodulatory properties and have enormous potential in the treatment of graft-versus-host disease (GVHD). However, the low implantation and survival rates of MSC in vivo, coupled with their weak immunosuppressive functions, have resulted in unstable clinical efficacy in the treatment of GVHD. Preconditioning of MSC with hypoxia, active molecules and gene modification can enhance the function of MSC and improve the implantation rate, survival rate and therapeutic effect of MSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!