"Tissues in a Dish": A Review of Organoids in Plastic Surgery.

Plast Reconstr Surg Glob Open

Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif.

Published: April 2020

Organoids are in vitro miniaturized organ models-or, colloquially, "organs in a dish." These 3-dimensional, multicellular structures are classically derived from pluripotent or multipotent stem cells. When guided by tissue-specific molecular factors, these cells exhibit self-organizing abilities that allow them to accurately recapitulate the architecture and function of the organ of interest. Organoid technology is a rapidly expanding field that endows researchers with an unprecedented ability to recreate, study, and manipulate complex biologic processes in vitro. When compared with standard 2- and 3-dimensional culture systems, which rely on co-culturing pre-established cell types, organoids provide a more biomimetic model with which to study the intercellular interactions necessary for in vivo organ function and architecture. Organoids have the potential to impact all avenues of medicine, including those fields most relevant to plastic and reconstructive surgery such as wound healing, oncology, craniofacial reconstruction, and burn care. In addition to their ability to serve as a novel tool for studying human-specific disease, organoids may be used for tissue engineering with the goal of developing biomimetic soft-tissue substitutes, which would be especially valuable to the plastic surgeon. Although organoids hold great promise for the field of plastic surgery, technical challenges in creating vascularized, multilineage organoids must be overcome to allow for the integration of this technology in clinical practice. This review provides a brief history of the organoid, highlights its potential clinical applications, discusses certain limitations, and examines the impact that this technology may have on the field of plastic and reconstructive surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209840PMC
http://dx.doi.org/10.1097/GOX.0000000000002787DOI Listing

Publication Analysis

Top Keywords

plastic surgery
8
plastic reconstructive
8
reconstructive surgery
8
field plastic
8
organoids
7
plastic
5
"tissues dish"
4
dish" review
4
review organoids
4
organoids plastic
4

Similar Publications

Jejunal Artery Aneurysm Exclusion With Immediate Vascular Reconstruction: A Case Report.

Port J Card Thorac Vasc Surg

January 2025

Angiology and Vascular Surgery, Unidade Local de Saúde de São João; Surgery and Physiology, Faculdade de Medicina da Universidade do Porto, Portugal.

A 44 year-old previously healthy woman presented a persistent epigastric pain. Computed tomography revealed a saccular aneurysm with a diameter of 25x20 mm in the first jejunal artery and also a stenosis in the celiac trunk associated with median arcuate ligament syndrome, turning the hepatic perfusion dependent of the gastroduodenal artery flow. Through a midline laparotomy, celiac axis was exposed, and median arcuate ligament released for median arcuate ligament syndrome treatment.

View Article and Find Full Text PDF

Background: Management of the extensive soft tissue injuries remains a significant challenge in orthopedic and plastic reconstructive surgery. Since the thumb is responsible for 40% of the functions of the hand, saving and reconstructing a mangled thumb is essential for the patient's future.

Case Presentation: This case report describes the management of a severe occupational thumb injury in a 25-year-old white Persian male who sustained an occupational injury to his left thumb, resulting in extensive burn, crush injury to the distal and proximal phalanx, and severe soft tissue damage to the first metacarpal, thenar, and palmar areas.

View Article and Find Full Text PDF

A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification.

NPJ Digit Med

January 2025

Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.

View Article and Find Full Text PDF

This study investigated the knowledge, attitude, and practice (KAP) of aesthetic medicine practitioners concerning laser and/or light therapy for hypertrophic scars. Conducted at Hebei Medical University Third Hospital from December 25, 2023, to January 7, 2024, the cross-sectional study utilized a self-administered questionnaire to gather socio-demographic data and KAP scores. A total of 424 valid questionnaires were collected, with 220 (52.

View Article and Find Full Text PDF

Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment.

Cell Death Dis

January 2025

Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.

TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!