Lipodystrophies are a heterogeneous group of congenital or acquired disorders, characterized by partial or generalized loss of adipose tissue. Familial partial lipodystrophy (FPLD) presents with genetic and phenotypic variability with insulin resistance, hypertriglyceridemia and hepatic steatosis being the cardinal metabolic features. The severity of the metabolic derangements is in proportion with the degree of lipoatrophy. The underpinning pathogenetic mechanism is the limited capacity of adipose tissue to store lipids leading to lipotoxicity, low-grade inflammation, altered adipokine secretion and ectopic fat tissue accumulation. Advances in molecular genetics have led to the discovery of new genes and improved our knowledge of the regulation of adipose tissue biology. Diagnosis relies predominantly on clinical findings, such as abnormal fat tissue topography and signs of insulin resistance and is confirmed by genetic analysis. In addition to anthropometry and conventional imaging, new techniques such as color-coded imaging of fat depots allow more accurate assessment of the regional fat distribution and differentiation of lipodystrophic syndromes from common metabolic syndrome phenotype. The treatment of patients with lipodystrophy has proven to be challenging. The use of a human leptin analogue, metreleptin, has recently been approved in the management of FPLD with evidence suggesting improved metabolic profile, satiety, reproductive function and self-perception. Preliminary data on the use of glucagon-like peptide 1 receptor agonists (GLP1 Ras) and sodium-glucose co-transporter 2 () inhibitors in cases of FPLD have shown promising results with reduction in total insulin requirements and improvement in glycemic control. Finally, investigational trials for new therapeutic agents in the management of FPLD are underway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224169 | PMC |
http://dx.doi.org/10.2147/DMSO.S206053 | DOI Listing |
Eur J Histochem
January 2025
Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing.
Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.
View Article and Find Full Text PDFAgri
January 2025
Department of Anesthesiology and Reanimation, Ege University Faculty of Medicine, İzmir, Türkiye.
Stromal vascular fraction (SVF) is a heterogeneous collection of cells obtained from adipose tissue through lipoaspiration and is an alter-native intraarticular treatment option, especially in osteoarthritis (OA). The anti-inflammatory and extracellular tissue repair-stimulating properties of SVF increase its effectiveness in regeneration and repair mechanisms. One of the most common symptoms of hemophilia A and B is hemophilic arthropathy (HA).
View Article and Find Full Text PDFPhotodermatol Photoimmunol Photomed
January 2025
Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China.
Objective: Exosomes (Exos) from adipose derived stem cells (ADSCs) can delay skin photoaging, but their effects on reactive oxygen species (ROS) remains unclear. This study aimed to investigate the relationship between adipose derived stem cell exosomes (ADSCs-Exos) in anti-photoaging of skin and glutathione (GSH)/ ROS expression in human fibroblasts.
Methods: A skin photoaging model was established by irradiating human fibroblasts with ultraviolet B (UVB) light in vitro.
Front Physiol
January 2025
Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
Lifestyle-related diseases, such as atherosclerosis and diabetes, are now considered to be a series of diseases caused by chronic inflammation. Adipose tissue is considered to be an endocrine organ that not only plays a role in lipid storage, heat production, and buffering, but also produces physiologically active substances and is involved in chronic inflammation. Perivascular adipose tissue (PVAT) surrounding blood vessels similarly produces inflammatory and anti-inflammatory physiologically active substances that act on blood vessels either directly or via the bloodstream.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
Introduction: Systemic administration of induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs) has a therapeutic effect on myocardial ischemia. However, the therapeutic mechanism underlying systemic iPS-MSC-based therapy for ischemic cardiomyopathy (ICM) remains unclear. We investigated the therapeutic effects of iPS-MSCs through extracellular vesicle (EV)-mediated tissue repair in a rat model of ICM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!