Guanosine fast onset antidepressant-like effects in the olfactory bulbectomy mice model.

Sci Rep

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.

Published: May 2020

The treatment of major depressive disorder (MDD) is still a challenge. In the search for novel antidepressants, glutamatergic neuromodulators have been investigated as possible fast-acting antidepressants. Innovative studies suggest that the purine cycle and/or the purinergic signaling can be dysregulated in MDD, and the endogenous nucleoside guanosine has gained attention due to its extracellular effects. This study aimed to verify if guanosine produces fast-onset effects in the well-validated, reliable and sensitive olfactory bulbectomy (OBX) model of depression. The involvement of the mTOR pathway, a key target for the fast-onset effect of ketamine, was also investigated. Results show that a single i.p. injection of guanosine, or ketamine, completely reversed the OBX-induced anhedonic-like behavior 24 or 48 h post treatment, as well as the short-term recognition memory impairment 48 h post treatment. The antidepressant-like effects of guanosine and ketamine were completely abolished by rapamycin. This study shows, for the first time, that guanosine, in a way similar to ketamine, is able to elicit a fast antidepressant response in the OBX model in mice. The results support the notion that guanosine represents a new road for therapeutic improvement in MDD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242421PMC
http://dx.doi.org/10.1038/s41598-020-65300-wDOI Listing

Publication Analysis

Top Keywords

guanosine ketamine
12
antidepressant-like effects
8
olfactory bulbectomy
8
obx model
8
ketamine completely
8
48 h post
8
post treatment
8
guanosine
7
guanosine fast
4
fast onset
4

Similar Publications

Background: Severe burns are devastating injuries with significant immune dysfunction and result in substantial mortality and morbidity due to sepsis induced organ failure. Acute lung injury is the most common type of organ injury in sepsis, however, the mechanisms of which are poorly understood and effective therapeutic measures are limited. This study is aimed to investigate the effect of a small Guanosine triphosphatase (GTPase), Adenosine diphosphate ribosylation factor 6 (ARF6), on burn sepsis induced lung injury, and discuss the possible mechanisms.

View Article and Find Full Text PDF

Guanosine has been reported to elicit antidepressant-like responses in rodents, but if these actions are associated with its ability to afford neuroprotection against glutamate-induced toxicity still needs to be fully understood. Therefore, this study investigated the antidepressant-like and neuroprotective effects elicited by guanosine in mice and evaluated the possible involvement of NMDA receptors, glutamine synthetase, and GLT-1 in these responses. We found that guanosine (0.

View Article and Find Full Text PDF

Phosphodiesterase 1B (PDE1B) and PDE10A are dual-specificity PDEs that hydrolyse both cyclic adenosine monophosphate and cyclic guanosine monophosphate, and are highly expressed in the striatum. Several reports have suggested that PDE10A inhibitors may present a promising approach for the treatment of positive symptoms of schizophrenia, whereas PDE1B inhibitors may present a novel mechanism to modulate cognitive deficits. Previously, we have reported a novel dual inhibitor of PDE1B and PDE10A, compound 2 [(3-fluorophenyl)(2-methyl-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)methanone] which has shown inhibitory activity for human recombinant PDE1B and PDE10A in vitro.

View Article and Find Full Text PDF

Guanosine as a promising target for fast-acting antidepressant responses.

Pharmacol Biochem Behav

July 2022

Neuroscience Postgraduate Program, Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil. Electronic address:

Although the rapid-onset and sustained antidepressant responses elicited by ketamine have gained considerable attention in recent years, it has some knock-on effects that limit its widespread clinical use. Therefore, ketamine is considered the prototype for the new generation of glutamate-based rapid-acting antidepressants. Within this context, it has been demonstrated that guanosine, an endogenous guanine-based purine, has overlapping mechanisms of action with ketamine and is effective in eliciting fast antidepressant-like responses and even potentiating ketamine's actions in preclinical studies.

View Article and Find Full Text PDF

Guanosine boosts the fast, but not sustained, antidepressant-like and pro-synaptogenic effects of ketamine by stimulating mTORC1-driven signaling pathway.

Eur Neuropsychopharmacol

April 2022

Neuroscience Graduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil. Electronic address:

The mTORC1-dependent dendritic spines formation represents a key mechanism for fast and long-lasting antidepressant responses, but it remains to be determined whether this mechanism may account for the ability of guanosine in potentiating ketamine's actions. Here, we investigated the ability of ketamine plus guanosine to elicit fast and sustained antidepressant-like and pro-synaptogenic effects in mice and the role of mTORC1 signaling in these responses. The combined administration of subthreshold doses of ketamine (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!