A virophage cross-species infection through mutant selection represses giant virus propagation, promoting host cell survival.

Commun Biol

Unité MEPHI, Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 19-21 boulevard Jean Moulin, 13005, Marseille, France.

Published: May 2020

Virus adaptation to new hosts is a major cause of infectious disease emergence. This mechanism has been intensively studied in the context of zoonotic virus spillover, due to its impact on global health. However, it remains unclear for virophages, parasites of giant viruses and potential regulators of microbial communities. Here, we present, for the first time to our knowledge, evidence of cross-species infection of a virophage. We demonstrated that challenging the native population of Guarani virophage with two previously unidentified giant viruses, previously nonpermissive to this virophage, allows the selection of a mutant genotype able to infect these giant viruses. We were able to characterize the potential genetic determinant (deletion) carried by the virophage with the expanded-host range. Our study also highlights the relevant biological impact of this host adaptation by demonstrating that coinfection with the mixture containing the mutant virophage abolishes giant virus production and rescues the host cell population from lysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242381PMC
http://dx.doi.org/10.1038/s42003-020-0970-9DOI Listing

Publication Analysis

Top Keywords

giant viruses
12
cross-species infection
8
giant virus
8
host cell
8
virophage
6
giant
5
virophage cross-species
4
infection mutant
4
mutant selection
4
selection represses
4

Similar Publications

Giant viruses (GVs; ) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs.

View Article and Find Full Text PDF

Identification of a novel papillomavirus in oral swabs from giant pandas ().

Front Vet Sci

January 2025

Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.

To fully characterize papillomavirus diversity in giant pandas (), we identified a novel papillomavirus (named AmPV5, GenBank accession number MZ357114) in oral swabs from giant pandas with the help of viral metagenomics technology in this study. The complete circular genome of AmPV5 is 7,935 bp in length, with a GC content of 39.1%.

View Article and Find Full Text PDF

Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments.

View Article and Find Full Text PDF

Novel High-Quality Amoeba Genomes Reveal Widespread Codon Usage Mismatch Between Giant Viruses and Their Hosts.

Genome Biol Evol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria.

The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba.

View Article and Find Full Text PDF

The HNH endonuclease domain of the giant virus MutS7 specifically binds to branched DNA structures with single-stranded regions.

DNA Repair (Amst)

January 2025

Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan. Electronic address:

Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!