Nonscheduled R loops represent a major source of DNA damage and replication stress. Cells have different ways to prevent R-loop accumulation. One mechanism relies on the conserved THO complex in association with cotranscriptional RNA processing factors including the RNA-dependent ATPase UAP56/DDX39B and histone modifiers such as the SIN3 deacetylase in humans. We investigated the function of UAP56/DDX39B in R-loop removal. We show that UAP56 depletion causes R-loop accumulation, R-loop-mediated genome instability, and replication fork stalling. We demonstrate an RNA-DNA helicase activity in UAP56 and show that its overexpression suppresses R loops and genome instability induced by depleting five different unrelated factors. UAP56/DDX39B localizes to active chromatin and prevents the accumulation of RNA-DNA hybrids over the entire genome. We propose that, in addition to its RNA processing role, UAP56/DDX39B is a key helicase required to eliminate harmful cotranscriptional RNA structures that otherwise would block transcription and replication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328515 | PMC |
http://dx.doi.org/10.1101/gad.336024.119 | DOI Listing |
Cancer Res
November 2024
Accent Therapeutics (United States), Lexington, MA, United States.
DHX9 is a multifunctional DExH-box RNA helicase with important roles in the regulation of transcription, translation, and maintenance of genome stability. Elevated expression of DHX9 is evident in multiple cancer types, including colorectal cancer (CRC). Microsatellite instable-high (MSI-H) tumors with deficient mismatch repair (dMMR) display a strong dependence on DHX9, making this helicase an attractive target for oncology drug discovery.
View Article and Find Full Text PDFbioRxiv
October 2024
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Dr., Bethesda, MD 20892, USA.
Amyotrophic lateral sclerosis 4 (ALS4) is an autosomal dominant motor neuron disease that is molecularly characterized by reduced R-loop levels and caused by pathogenic variants in (). encodes an RNA/DNA helicase that resolves three-stranded nucleic acid structures called R-loops. Currently, there are no disease-modifying therapies available for ALS4.
View Article and Find Full Text PDFMethods Enzymol
October 2024
Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States. Electronic address:
Yeast Sen1 and its vertebrate ortholog Senataxin (also known as SETX) are RNA-DNA resolving helicases. Sen1 and SETX are implicated in multiple critical nuclear functions not limited to but including DNA replication and repair, RNA processing, and transcription. These> 200 kDa helicases have a two-domain architecture with an N-terminal regulatory helical repeat array linked to an SF1b helicase motor core via a variable sized central linker of low complexity sequence.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada.
The most abundant clustered regularly interspaced short palindromic repeats (CRISPR) type I systems employ a multisubunit RNA-protein effector complex (Cascade), with varying protein composition and activity. The Escherichia coli Cascade complex consists of 11 protein subunits and functions as an effector through CRISPR RNA (crRNA) binding, protospacer adjacent motif (PAM)-specific double-stranded DNA targeting, R-loop formation, and Cas3 helicase-nuclease recruitment for target DNA cleavage. Here, we present a biochemical reconstruction of the E.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA. Electronic address:
PCBP1, polycytosine (poly(C)) binding protein 1, an RNA and single-stranded DNA (ssDNA) binding protein, binds poly(C) DNA tracts but it remains unclear whether its ability to bind ssDNA contributes to transcriptional regulation. Here, we report that PCBP1's DNA binding sites are enriched at transcription start sites and that by binding to promoter regions, PCBP1 regulates transcription in addition to splicing and translation. At PCBP1 target genes, we show that PCBP1 interacts with several RNA/DNA hybrid (R-loop) associated G-quadruplex resolving helicases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!