Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles.

Photodiagnosis Photodyn Ther

Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina; Instituto Multidisciplinario de Biología Vegetal, IMBIV, CONICET, Argentina. Electronic address:

Published: September 2020

Bacterial biofilm are complex microbial communities covered by a matrix of extracellular polymeric substances, which develops when a community of microorganisms irreversibly adheres to a living or inert surface. This structure is considered an important virulence factor because it is difficult to eradicate and often responsible for treatment failures. This adherent community represents one of the greatest problems in public health due to the continued emergence of conventional antibiotic-therapy resistance. Photodynamic Antimicrobial Therapy (PACT) is a therapeutic alternative and promises to be an effective treatment against multiresistant bacteria biofilm, demonstrating a broad spectrum of action. This work demonstrates the reduction in biofilms of relevant clinical isolates (as Pseudomonas aeruginosa and Staphylococcus aureus) treated with PACT using low concentrations of amoxicillin-coated gold nanoparticles (amoxi@AuNP) as a photosensitizer. Moreover, the viability reduction of 60% in S. aureus biofilms and 70% in P. aeruginosa biofilms were obtained after three hours of irradiation with white light and amoxi@AuNP. Scanning electron microscopy analysis revealed that amoxi@AuNP could penetrate and cause damage to the biofilm matrix, and interact with bacteria cells. A strong biofilm production in P. aeruginosa was observed by confocal laser scanning microscopy using acridine orange as a probe, and a markedly decrease in live bacteria was appreciated when PACT was applied. The use of amoxi@AuNP for PACT allows the viability reduction of clinical Gram positive and Gram negative biofilms. This novel strategy needs shorter irradiation times and lower concentrations of nanoparticles than other reports described. This could be attributed to two major innovations: the selectivity for the bacterial wall given by the amoxicillin and the polydispersity of size and shapes with seems to contribute to the photo-antibacterial capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2020.101811DOI Listing

Publication Analysis

Top Keywords

amoxicillin-coated gold
8
gold nanoparticles
8
viability reduction
8
biofilm
5
rapid effective
4
effective photodynamic
4
photodynamic treatment
4
treatment biofilm
4
biofilm infections
4
infections low
4

Similar Publications

Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles.

Photodiagnosis Photodyn Ther

September 2020

Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina; Instituto Multidisciplinario de Biología Vegetal, IMBIV, CONICET, Argentina. Electronic address:

Bacterial biofilm are complex microbial communities covered by a matrix of extracellular polymeric substances, which develops when a community of microorganisms irreversibly adheres to a living or inert surface. This structure is considered an important virulence factor because it is difficult to eradicate and often responsible for treatment failures. This adherent community represents one of the greatest problems in public health due to the continued emergence of conventional antibiotic-therapy resistance.

View Article and Find Full Text PDF

Selective Photoinduced Antibacterial Activity of Amoxicillin-Coated Gold Nanoparticles: From One-Step Synthesis to in Vivo Cytocompatibility.

ACS Omega

January 2018

Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR), University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada.

Photoinduced antibacterial gold nanoparticles were developed as an alternative for the treatment of antibiotic-resistant bacteria. Thanks to the amoxicillin coating, they possess high in vivo stability, selectivity for the bacteria wall, a good renal clearance, and are completely nontoxic for eukaryotic cells at the bactericidal concentrations. A simple one-step synthesis of amoxi@AuNP is described at mild temperatures using the antibiotic as both reducing and stabilizing agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!