Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) has emerged in recent decades as one of the leading causes of mortality worldwide. The burden of TB is alarmingly high, with one third affected global population as reported by WHO. Short-course treatment with an antibiotic is a powerful weapon to treat infection of susceptible MTB strain, however; MTB has developed resistance to anti-TB drugs, which is an escalating global health crisis. Thus there is urgent need to identify new drug targets. RecA is a 38 kilodalton protein required for the repair and maintenance of DNA and regulation of the SOS response. The objective of this study is to understand the effect of disruption of RecA gene (deletion mutant ΔdisA from previous study) in a surrogate model for MTB, Mycobacterium smegmatis. This study demonstrated that disruption of RecA causes enhanced susceptibility towards rifampicin and generation of ROS leading to lipid peroxidation and impaired membrane homeostasis as depicted by altered cell membrane permeability and efflux pump activity. Mass spectrometry based lipidomic analysis revealed decreased mycolic acid moieties, phosphatidylinositol mannosides (PIM), Phthiocerol dimycocerosate (DIM). Furthermore, biofilm formation was considerably reduced. Additionally, we have validated all the disrupted phenotypes by RT-PCR which showed a good correlation with the biochemical assays. Lastly, RecA mutant displayed reduced infectivity in Caenorhabditis elegans illustrating its vulnerability as antimycobacterial target. Together, present study establishes a link between DNA repair, drug efflux and biofilm formation and validates RecA as an effective drug target. Intricate studies are needed to further understand and exploit this therapeutic opportunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2020.104262DOI Listing

Publication Analysis

Top Keywords

biofilm formation
12
dna repair
8
efflux pump
8
pump activity
8
mycobacterium smegmatis
8
disruption reca
8
reca
5
rec disruption
4
disruption unveils
4
unveils cross
4

Similar Publications

The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors.

View Article and Find Full Text PDF

Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy.

NPJ Biofilms Microbiomes

January 2025

Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.

Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.

View Article and Find Full Text PDF

The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios.

View Article and Find Full Text PDF

Antibiofilm mechanism of mouse gastrointestinal stimulation against Vibrio parahaemolyticus under bile salt culture.

Microb Pathog

January 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Bile salts are crucial microbe-selective inhibitors present in the intestinal tracts of humans and other animals. Environmental and clinical strains of Vibrio parahaemolyticus (V. parahaemolyticus) exhibited different biofilm-forming abilities under bile salt incubation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!