Reading is a complex task involving different brain areas. As a crystallized ability, reading is also known to have effects on brain structure and function development. However, there are still open questions about what are the elements of the reading networks and how structural and functional brain measures shape the reading ability. The present study used a data-driven approach to investigate whether reading-related brain structural measures of cortical thickness, myelination, sulcus depth and structural connectivity and functional connectivity from the whole brain can predict individual differences in reading skills. It used different brain measures and performance scores from the Oral Reading Recognition Test (ORRT) measuring reading ability from 998 participants. We revealed reading-related brain areas and connections, and evaluated how well area and connection measures predict reading performance. Interestingly, the combination of all brain measures obtained the best predictions. We further grouped reading-related areas into positive and negative networks, each with four different levels (Core Regions, Extended-Regions 1, 2, 3), representing different correlation levels with the reading scores, and the non-correlated Region irrelevant to reading ability. The Core Regions are composed of areas that are most strongly correlated with reading performance. Insular and frontal opercular cortex, lateral temporal cortex, and early auditory cortex occupy the positive Core Region, while inferior temporal and motor cortex occupy the negative Core Region. Aside from those areas, the present study also found more reading-related areas including visual and language-related areas. In addition, connections predicting reading scores are denser inside the reading-related networks than outside. Together, the present study reveals extended reading networks of the brain and provides an extended data-driven analytical framework to study interpretable brain-behavior relationships, which are transferable also to studying other abilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2020.116966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!