A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

IRF9 promotes apoptosis and innate immunity by inhibiting SIRT1-p53 axis in fish. | LitMetric

IRF9 promotes apoptosis and innate immunity by inhibiting SIRT1-p53 axis in fish.

Fish Shellfish Immunol

School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China. Electronic address:

Published: August 2020

As a NAD-dependent deacetylase, SIRT1 is widely involved in apoptosis and cellular inflammation via multiple pathways such as p53, NF-кB and STAT. More and more studies have shown that p53 is the first non-histone deacetylation target of SIRT1. SIRT1-p53 axis thus plays an important role in mammalian cells. IRF9 is an important member of interferon regulator factor family and performs an important role in innate immunity against foreign virus invasion. More importantly, human IRF9 can suppress the SIRT1-p53 axis. However, the functions and relationship between IRF9 and SIRT1-p53 axis are rarely studied in fish. To this end, we made a preliminary research on the functions of grass carp (Ctenopharyngodon idella) IRF9, SIRT1 and p53 in apoptosis and innate immunity. Firstly, we cloned and identified the ORF of SIRT1 (named CiSIRT1, MN125614) from C. idella and demonstrated that CiIRF9 promoted apoptosis, while CiSIRT1 inhibited apoptosis by flow cytometry and TUNEL experiments. Next, we found the interaction between CiSIRT1 and Cip53 in vivo by co-immunoprecipitation experiments. Moreover, the colocalization analysis also showed CiSIRT1 and Cip53 were mainly distributed in nucleus. Thirdly, we got a conclusion that CiIRF9 can repress the expression of CiSIRT1, implying that CiIRF9 regulates CiSIRT1-p53 axis. Finally, CiSIRT1 mRNA level was significantly up-regulated and the expression reached the highest level at 24 h post poly (I:C) stimulation in CIK cells. So, CiSIRT1 may exert an important function in innate immunity. Furthermore, we found CiSIRT1 down-regulated the expression of CiIFN1. In summary, CiIRF9 promotes apoptosis and innate immunity by inhibiting SIRT1-p53 axis. These findings will provide a new theoretical basis for the research on teleost innate immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.05.038DOI Listing

Publication Analysis

Top Keywords

innate immunity
24
sirt1-p53 axis
20
apoptosis innate
12
promotes apoptosis
8
immunity inhibiting
8
inhibiting sirt1-p53
8
cisirt1
8
cisirt1 cip53
8
apoptosis
6
innate
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!