Adaptive matching between phyllosphere bacteria and their tree hosts in a neotropical forest.

Microbiome

Département des sciences biologiques, Université du Québec à Montréal, 141, Avenue du Président-Kennedy, Montréal, Quebec, H2X 1Y4, Canada.

Published: May 2020

Background: The phyllosphere is an important microbial habitat, but our understanding of how plant hosts drive the composition of their associated leaf microbial communities and whether taxonomic associations between plants and phyllosphere microbes represent adaptive matching remains limited. In this study, we quantify bacterial functional diversity in the phyllosphere of 17 tree species in a diverse neotropical forest using metagenomic shotgun sequencing. We ask how hosts drive the functional composition of phyllosphere communities and their turnover across tree species, using host functional traits and phylogeny.

Results: Neotropical tree phyllosphere communities are dominated by functions related to the metabolism of carbohydrates, amino acids, and energy acquisition, along with environmental signalling pathways involved in membrane transport. While most functional variation was observed within communities, there is non-random assembly of microbial functions across host species possessing different leaf traits. Metabolic functions related to biosynthesis and degradation of secondary compounds, along with signal transduction and cell-cell adhesion, were particularly important in driving the match between microbial functions and host traits. These microbial functions were also evolutionarily conserved across the host phylogeny.

Conclusions: Functional profiling based on metagenomic shotgun sequencing offers evidence for the presence of a core functional microbiota across phyllosphere communities of neotropical trees. While functional turnover across phyllosphere communities is relatively small, the association between microbial functions and leaf trait gradients among host species supports a significant role for plant hosts as selective filters on phyllosphere community assembly. This interpretation is supported by the presence of phylogenetic signal for the microbial traits driving inter-community variation across the host phylogeny. Taken together, our results suggest that there is adaptive matching between phyllosphere microbes and their plant hosts. Video abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243311PMC
http://dx.doi.org/10.1186/s40168-020-00844-7DOI Listing

Publication Analysis

Top Keywords

phyllosphere communities
16
microbial functions
16
adaptive matching
12
plant hosts
12
phyllosphere
10
matching phyllosphere
8
neotropical forest
8
hosts drive
8
phyllosphere microbes
8
tree species
8

Similar Publications

Microbial communities in the phyllosphere and endosphere of Norway spruce under attack by .

Front Microbiol

January 2025

Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.

species complex has been regarded as the most destructive disease agent of conifer trees in boreal forests. Tree microbiome can regulate the plant-pathogen interactions by influencing both host resistance and pathogen virulence. Such information would help to improve the future health of forests and explore strategies to enhance ecosystem stability.

View Article and Find Full Text PDF

Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems.

View Article and Find Full Text PDF

Foliar Spraying of Nanoselenium Improves the Nutritional Quality of Alfalfa by Recruiting Beneficial Phyllosphere Bacteria and Regulating the Distribution and Translocation of Selenium.

J Agric Food Chem

January 2025

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010010, China.

Nanoselenium shows potential trends in improving plant health and food quality. In this study, different concentrations of nanoselenium were sprayed on the leaves of alfalfa. Compared to the control, nanoselenium (100 mg·L) significantly increased SeMet and SeMeCys contents in the roots, stems, and leaves of alfalfa.

View Article and Find Full Text PDF

Shaping rhizocompartments and phyllosphere microbiomes and antibiotic resistance genes: The influence of different fertilizer regimes and biochar application.

J Hazard Mater

January 2025

Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups.

View Article and Find Full Text PDF

Differential Responses of Methylobacterium and Sphingomonas Species to Multispecies Interactions in the Phyllosphere.

Environ Microbiol

January 2025

Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.

The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!