Sarcoids are the most common skin neoplasm in the Equidae family. Sarcoids are benign, but may cause severe damage in affected animals. Due to the high risk of post-treatment recurrence and the lack of an effective method of treatment, it is reasonable to perform studies on the molecular aspects of this neoplasm. Therefore, the present studies analyzed five genes (cell cycle control binding protein alpha, coronin 1b, metalloproteinase 2, tissue inhibitor of metalloproteinases 3 and vimentin) related to cell mobility and invasion traits. Primary healthy fibroblasts and sarcoid cells were obtained from skin biopsies. Cell lines were cultured in two different medium types with different concentrations of foetal bovine serum (10% and 0.5% FBS) to study its influence on the analyzed genes. Gene expression was measured using the real-time PCR method. The results showed significant differences in two genes (coronin and vimentin) depending on culture conditions. In conclusion, the results enabled finding two new genes, related to cell motility and invasion traits, in which gene expression is deregulated. Results of the study may put new knowledge into the complexity of the genetic background of this disease and show the importance of further analysis on this subject.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278424PMC
http://dx.doi.org/10.3390/ani10050880DOI Listing

Publication Analysis

Top Keywords

gene expression
12
mobility invasion
8
analyzed genes
8
genes cell
8
invasion traits
8
invasion gene
4
expression patterns
4
patterns equine
4
equine sarcoid
4
sarcoid sarcoids
4

Similar Publications

The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.

View Article and Find Full Text PDF

Characterization of Dystrophin Dp71 Expression and Interaction Partners in Embryonic Brain Development: Implications for Duchenne/Becker Muscular Dystrophy.

Mol Neurobiol

January 2025

Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.

Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) has a poor prognosis, considerable cellular heterogeneity, and ranks fifth among malignant tumours. Understanding the tumour microenvironment (TME) and intra-tumor heterogeneity (ITH) may lead to the development of novel GC treatments.

Methods: The single-cell RNA sequencing (scRNA-seq) dataset was obtained from the Gene Expression Omnibus (GEO) database, where diverse immune cells were isolated and re-annotated based on cell markers established in the original study to ascertain their individual characteristics.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoikis-related genes (ARGs) in the AD brain, thereby expanding the repertoire of biomarkers for the disease. Using publically available gene expression data for the hippocampus from both healthy and AD subjects, differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Background: The traditional use of Moringa oleifera (MO), an essential food source in Africa and Asia, to cure various diseases dates back thousands of years. This study examines the aqueous and ethanolic leaf extracts of MO's in vitro anti-leukemia capabilities.

Methods: After preparing aqueous and ethanolic MO leaf extracts, cells were treated with various concentrations for 48 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!