Silicon is expected to be a useful anode material in lithium ion batteries for future energy storage applications, because of its high theoretical charge storage density of Li ions. However, volume expansion due to lithiation fractures the Si anode material, leading to poor cycle stability of battery operation. The approaches to overcome the problem include using Si nanowires to relieve the stress induced by volume expansion and coating a protective layer on the Si anode to prevent delamination. In this study, we use in-situ scanning electron microscopy to monitor the morphological changes of 90 nm thick pristine Si nanowires and the Si nanowires coated with amorphous TiO, respectively, during electrochemical lithiation. The results of in-situ observation show that both kinds of Si nanowires exhibit a larger thickness after 10 h lithiation and suffer fracture after 25 h. It is also found that the TiO layer is not strong enough to prevent Si nanowires from fracture. Since the TiO layer can not be elastically deformed, this surface shell fractures earlier in the lithiation process than pristine Si nanowires. Transformation of the crystalline Si nanowires to an amorphous phase and lithium composition detected in the nanowires support that the observed fracture indeed results from lithiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab957a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!