A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Factors affecting the ability of extensive green roofs to reduce nutrient pollutants in rainfall runoff. | LitMetric

Green roofs can retain urban rainfall runoff, but there are doubts about whether they can reduce urban nonpoint source pollution. To explore the factors affecting the ability of green roofs to reduce nutrients in rainfall runoff, nine types of extensive green roofs (EGRs) were analysed during 38 natural rainfall events and two early spring irrigation runoff events from 1 March to 30 November 2019 in Beijing. Differences among the module scale, growing medium material, growing medium depth, drainage layer material, planting time, rainfall characteristics and seasonal variation were examined to study their correlation with pollutant event mean concentration (EMC) and the load reduction performance of EGRs. The results showed that EGRs had higher total nitrogen (TN), ammonia nitrogen (NH-N) and nitrate nitrogen (NO-N) concentrations than traditional concrete roofs, but total phosphorus (TP) concentrations were similar, and EGRs could reduce some of the nutrient loads. One-way analysis of variance showed that the module scale, growing medium material, growing medium depth, drainage layer material, and planting time had no significant effect on TN and NO-N concentrations (p > 0.05). The growing medium material had a significant effect on the TP concentration (p < 0.05). From the perspective of nutrient load reduction, module scale had a significant effect on TN and NH-N loads (p < 0.05). The growing medium depth had a significant effect on NH-N loads (p < 0.05). In addition, the growing medium material had a significant effect on TP loads (p < 0.05). When porous wool fibre and a bumpy plastic drainage board were selected as drainage layer materials, the effect on the NO-N load differed significantly. In other situations, there were no factors with significant differences. In addition, the rainfall characteristics and seasonal variation influenced the pollutant concentration and EGR runoff load.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139248DOI Listing

Publication Analysis

Top Keywords

growing medium
20
green roofs
16
rainfall runoff
12
medium material
12
factors ability
8
extensive green
8
roofs reduce
8
reduce nutrient
8
module scale
8
scale growing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!