Multi-drug resistance (MDR) bacteria pose a significant threat to our ability to effectively treat infections due to the development of several antibiotic resistant mechanisms. A major component in the development of the MDR phenotype in MDR bacteria is over expression of different-type of efflux pumps, which actively pump out antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments. Potent efflux pump inhibitors (EPIs) could be used as adjunctive therapies that would increase the potency of existing antibiotics and decrease the emergence of MDR bacteria. Several potent inhibitors of efflux pumps have been reported which has been summarized here. All the natural and synthetic EPIs were optimized with Gaussian and Avogadro software. The optimized structures were docked with each class of efflux pumps and their bonding parameters were computed. The theoretical analyses were performed with density functional theory (DFT). Overall, computational study revealed a good trend of electrophilicity and ionization potential of the EPIs, the obtained average values are within in the range of 0.001414 AU ± 0.00032 and 0.208821 AU ± 0.015545, respectively. Interestingly, cathinone interacts with most of the efflux pumps among the tested inhibitors. The electrophilicity and ionization potential of cathinone are 0.00198 and 0.2388 AU, respectively. The study opens a new road for designing future-generation target-specific efflux pump inhibitors, as well as one molecule with multiple inhibition abilities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2020.107275DOI Listing

Publication Analysis

Top Keywords

efflux pumps
24
mdr bacteria
12
efflux
8
bacterial efflux
8
efflux pump
8
pump inhibitors
8
electrophilicity ionization
8
ionization potential
8
pumps
6
inhibitors
5

Similar Publications

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.

View Article and Find Full Text PDF

The global dissemination of pathotypes with multidrug-resistant (MDR) and hypervirulent traits poses a threat to public health. The situation in Armenia is unclear, and we performed a comprehensive characterisation of 48 clinical isolates of , collected from 2018 to 2024. The majority of the isolates (64.

View Article and Find Full Text PDF

Efflux Pumps and Porins Enhance Bacterial Tolerance to Phenolic Compounds by Inhibiting Hydroxyl Radical Generation.

Microorganisms

January 2025

State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China.

Phenolic compounds are industrially versatile chemicals that have been successfully produced in microbial cell factories. Unfortunately, most phenolic compounds are highly toxic to cells in specific cellular environments or above a particular concentration because they form a complex with iron and promote hydroxyl radical production in Fenton reactions, resulting in the ferroptosis of cells. Here, we demonstrated that overexpression of efflux pumps and porins, including porins LamB and OmpN, and efflux pumps EmrAB, MdtABC, and SrpB, can enhance phloroglucinol (PG) tolerance by inhibiting the generation of hydroxyl radicals.

View Article and Find Full Text PDF

is considered one of the prioritized ESKAPE microorganisms for the research and development of novel treatments by the World Health Organization, especially because of its remarkable persistence and drug resistance. In this review, we describe how this can be acquired by the enzymatic degradation of antibiotics, target site modification, altered membrane permeability, multidrug efflux pumps, and their ability to form biofilms. Also, the evolution of drug resistance in , which is mainly driven by mobile genetic elements, is reported, with particular reference to plasmid-associated resistance, resistance islands, and insertion sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!