The human cardiac troponin (hcTn) has been implicated in diverse cardiovascular diseases (CDs). The protein function is regulated by the inter-subunit interaction between the N-terminal domain of hcTnC and the C-terminal switch peptide of hcTnI; disruption of the interaction has been recognized as a potential therapeutic strategy for CDs. Here, we report use of biogenic medicines as small-molecule competitors to directly disrupt the protein-protein interaction by competitively targeting the core binding site (CBS) of hcTnC NTD domain. A multistep virtual screening protocol is performed against a biogenic compound library to identify competitor candidates and competition assay is employed to verify the screening results. Consequently, two compounds Collismycin and Compound e are identified as strong competitors (CC < 10 μM) with hcTnI for hcTnC CBS site, while other tested compounds are found to have moderate (CC = 10-100 μM), low (CC > 100 μM) or no (CC = N.D.) potency. The competitor ligands are anchored at the core groove of hcTnC CBS site through aromatic and hydrophobic interactions, while few peripheral hydrogen bonds are formed to further confer specificity for domain-compound recognition. These molecular-level findings would benefit from further in vitro and in vivo studies at cellular and animal levels, which can help to practice the ultimate therapeutic purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2020.107272DOI Listing

Publication Analysis

Top Keywords

inter-subunit interaction
8
human cardiac
8
cardiac troponin
8
biogenic medicines
8
hctnc cbs
8
cbs site
8
hctnc
5
rational molecular
4
molecular targeting
4
targeting inter-subunit
4

Similar Publications

Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).

Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.

View Article and Find Full Text PDF

In the human heart, the binding of cyclic adenosine monophosphate (cAMP), a second messenger, to hyperpolarization and cyclic nucleotide-gated (HCN) regulates the automaticity of pacemaker cells. Recent single-molecule binding studies show that cAMP bound to each subunit of purified tetrameric HCN channels independently, in contrast to findings in cells. To explore the lipid membrane's role in cAMP regulation, we reconstituted purified human HCN channels in various lipid nanodiscs and resolved single molecule ligand-binding dynamics.

View Article and Find Full Text PDF

Organisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner.

View Article and Find Full Text PDF

Bending stiffness of Toxoplasma gondii actin filaments.

J Biol Chem

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520. Electronic address:

Article Synopsis
  • Actin is crucial for the Apicomplexan parasite Toxoplasma gondii, supporting key processes like invasion and organelle inheritance, and its unique properties enable rapid treadmilling compared to vertebrate actin.
  • Recent findings suggest that although T. gondii actin (TgAct1) has weaker interactions at its D-loop, this does not significantly impair its bending stiffness or stability, making it similar to vertebrate actin.
  • Structural analysis shows that despite the differences at the D-loop, TgAct1 filaments maintain stabilizing features, indicating a mechanism where weak D-loop interactions affect subunit addition at the ends but not within the filament itself.
View Article and Find Full Text PDF

Dual effects of mefenamic acid on the I molecular complex.

Br J Pharmacol

February 2025

Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.

Article Synopsis
  • - Mefenamic acid, a non-steroidal anti-inflammatory drug, can both enhance and inhibit cardiac ion currents formed by KCNQ1 and KCNE1 channels, revealing its dual effect on these channels, especially in patients with long and short QT syndromes.
  • - The study used whole cell patch clamp techniques and molecular dynamics simulations to investigate how mefenamic acid interacts with these channels, particularly noting its inhibition at high concentrations and its potential to preserve some current potentiation effects.
  • - Findings emphasize the importance of specific structural regions in the KCNQ1/KCNE1 channels that influence how drugs like mefenamic acid affect ion current, which has significant implications for developing treatments for certain genetic long QT syndrome mutations.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!