Inhibition of the H3K79 histone methyltransferase DOT1L has exhibited encouraging preclinical and early clinical activity in KMT2A (MLL)-rearranged leukemia, supporting the development of combinatorial therapies. Here, we investigated two novel combinations: dual inhibition of the histone methyltransferases DOT1L and EZH2, and the combination with a protein synthesis inhibitor. EZH2 is the catalytic subunit in the polycomb repressive complex 2 (PRC2), and inhibition of EZH2 has been reported to have preclinical activity in KMT2A-r leukemia. When combined with DOT1L inhibition, however, we observed both synergistic and antagonistic effects. Interestingly, antagonistic effects were not due to PRC2-mediated de-repression of HOXA9. HOXA cluster genes are key canonical targets of both KMT2A and the PRC2 complex. The independence of the HOXA cluster from PRC2 repression in KMT2A-r leukemia thus affords important insights into leukemia biology. Further studies revealed that EZH2 inhibition counteracted the effect of DOT1L inhibition on ribosomal gene expression. We thus identified a previously unrecognized role of DOT1L in regulating protein production. Decreased translation was one of the earliest effects measurable after DOT1L inhibition and specific to KMT2A-rearranged cell lines. H3K79me2 chromatin immunoprecipitation sequencing patterns over ribosomal genes were similar to those of the canonical KMT2A-fusion target genes in primary AML patient samples. The effects of DOT1L inhibition on ribosomal gene expression prompted us to evaluate the combination of EPZ5676 with a protein translation inhibitor. EPZ5676 was synergistic with the protein translation inhibitor homoharringtonine (omacetaxine), supporting further preclinical/clinical development of this combination. In summary, we discovered a novel epigenetic regulation of a metabolic process-protein synthesis-that plays a role in leukemogenesis and affords a combinatorial therapeutic opportunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362846 | PMC |
http://dx.doi.org/10.1016/j.exphem.2020.04.007 | DOI Listing |
Sci Rep
December 2024
Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China.
Objective: To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction.
Methods: Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis.
Results: SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts.
Cancer Res
December 2024
Georgetown University, Washington, DC, United States.
Tumor-initiating cancer stem cells (CSC) pose a challenge in human malignancies since they are largely treatment resistant and can seed local recurrence and metastasis. Epigenetic mechanisms governing cell fate decisions in embryonic and adult stem cells are deregulated in CSCs. This review focuses on the methyltransferase DOT1L, which methylates H3K79 and is a key epigenetic regulator governing embryonic organogenesis and adult tissue stem cell maintenance.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Castrate-resistant prostate cancer (CRPC) is one of the most difficult cancers in men and is characterized by a poor prognosis and a high risk of metastasis. The overexpression of the disruptor of telomeric silencing 1-like (DOT1L), which is a specific methyltransferase for histone H3 at lysine residue 79 (H3K79), has been related to poor outcomes in patients with CRPC. Therefore, targeting DOT1L is considered a potential therapeutic approach to overcome the significant medical challenges of CRPC.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK.
KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A-menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often driven by menin mutations or alternative oncogenic pathways, remains a significant challenge.
View Article and Find Full Text PDFCancer Med
November 2024
Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia.
Background: The child cancer, neuroblastoma (NB), is characterised by a low incidence of mutations and strong oncogenic embryonal driver signals. Many new targeted epigenetic modifier drugs have failed in human trials as monotherapy.
Methods: We performed a high-throughput, combination chromatin-modifier drug screen against NB cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!