Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Influenza causes numerous deaths worldwide every year. Predicting the number of influenza patients is an important task for medical institutions. Two types of data regarding influenza-like illnesses (ILIs) are often used for flu prediction: (1) historical data and (2) user generated content (UGC) data on the web such as search queries and tweets. Historical data have an advantage against the normal state but show disadvantages against irregular phenomena. In contrast, UGC data are advantageous for irregular phenomena. So far, no effective model providing the benefits of both types of data has been devised. This study proposes a novel model, designated the two-stage model, which combines both historical and UGC data. The basic idea is, first, basic regular trends are estimated using the historical data-based model, and then, irregular trends are predicted by the UGC data-based model. Our approach is practically useful because we can train models separately. Thus, if a UGC provider changes the service, our model could produce better performance because the first part of the model is still stable. Experiments on the US and Japan datasets demonstrated the basic feasibility of the proposed approach. In the dropout (pseudo-noise) test that assumes a UGC service would change, the proposed method also showed robustness against outliers. The proposed model is suitable for prediction of seasonal flu.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241782 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233126 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!