Acute graft versus host disease (aGvHD) remains a major impediment to successful allogeneic hematopoietic cell transplantation (allo-HCT). To solve this problem, a greater knowledge of factors that regulate the differentiation of donor T cells toward cytotoxic cells or Tregs is necessary. We report that the β2-adrenergic receptor (β2-AR) is critical for regulating this differentiation and that its manipulation can control aGvHD without impairing the graft-versus-tumor (GvT) effect. Donor T cell β2-AR expression and signaling is associated with decreased aGvHD when compared with recipients of β2-AR-/- donor T cells. We determined that β2-AR activation skewed CD4+ T cell differentiation in vitro and in vivo toward Tregs rather than the T helper 1 (Th1) phenotype. Treatment of allo-HCT recipients with a selective β2-agonist (bambuterol) ameliorated aGvHD severity. This was associated with increased Tregs, decreased cytotoxic T cells, and increased donor BM-derived myeloid-derived suppressor cells (MDSCs) in allogeneic and humanized xenogeneic aGvHD models. β2-AR signaling resulted in increased Treg generation through glycogen synthase kinase-3 activation. Bambuterol preserved the GvT effect by inducing NKG2D+ effector cells and central memory T cells. These data reveal how β-AR signaling can be targeted to ameliorate GvHD severity while preserving GvT effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406296PMC
http://dx.doi.org/10.1172/jci.insight.137788DOI Listing

Publication Analysis

Top Keywords

donor cells
12
β2-adrenergic receptor
8
cells
8
cytotoxic cells
8
donor
5
agvhd
5
receptor activation
4
activation donor
4
cells ameliorates
4
ameliorates acute
4

Similar Publications

Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.

View Article and Find Full Text PDF

Carbazole-derived self-assembled monolayers (SAMs) are promising materials for hole-extraction layer (HEL) in conventional organic photovoltaics (OPVs). Here, a SAM Cbz-2Ph derived from 3,6-diphenylcarbazole is demonstrated. The large molecular dipole moment of Cbz-2Ph allows the modulation of electrode work function to facilitate hole extraction and maximize photovoltage, thus improving the OPV performance.

View Article and Find Full Text PDF

T cell-based immunotherapies targeting antigens on tumor cells have shown efficacy as anti-cancer treatments. While neoantigens are created by somatic mutations acquired during tumorigenesis, allogeneic stem cell transplantation as treatment for hematological malignancies exploits minor histocompatibility antigens encoded by genetic differences between patients and donors. Screening methods to predict neoantigens and minor histocompatibility antigens typically consider only conventional antigens created by nonsynonymous mutations or polymorphisms coding for amino acid changes in canonical open reading frames (ORFs).

View Article and Find Full Text PDF

Background: Neonates with congenital anomalies frequently require perioperative allogeneic red blood cell (RBC) transfusion. Whole cord blood for autologous transfusion to neonates may provide an alternative RBC source, but whether sufficient volumes can be collected after delayed cord clamping to reduce allogeneic RBC requirements is unknown.

Study Design And Methods: Inclusion criteria were mothers delivering a viable infant >34 weeks' gestation.

View Article and Find Full Text PDF

The photovoltaic performance of organic solar cells (OSCs) has reached the threshold for industrial applications, but the cost of most high-performance organic photovoltaic molecules is too high to meet the needs of industrialization. Herein, two low-cost thiophene--quinoxaline (TQ)-based polymers, PTQ16-10 and PTQ16-20, are designed and synthesized by incorporating a benzotriazole (BTA) unit into the PTQ10 backbone, with the consideration of expanding the chemical modifiability of PTQ10 and thus optimizing its photovoltaic properties. The incorporation of BTA induces improved light absorption, up-shifted energy levels, more orderly molecular π-π packing, enhanced molecular crystallinity, and better charge transport capacity of the two polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!