Scandium Tetrahedron Supported by H Anion and CN Pentaanion inside Fullerene C.

Inorg Chem

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Published: June 2020

Endohedral metallofullerenes have greatly expanded the range of the fullerene family due to their nesting structure and unusual encapsulated clusters protected by a fullerene cage. Herein, we report a metallofullerene ScCNH@-C, which has a scandium tetrahedron supported by H and CN anions inside fullerene C. ScCNH@-C has a rare multilayer nesting structure, and the internal ScCNH is the most complex endohedral cluster disclosed to date. ScCNH@-C has so many bonding types (metal-carbide, metal-nitride, and metal-hydride), which weave a polyhedron of ScCNH clusters. This work shows that the endohedral metallofullerenes have the potential to build inorganic nesting polyhedra that have distinctive architectures and unique electronic properties. ScCNH@-C was synthesized by means of the arc-discharge method using scandium and graphite under the mixed atmosphere of hydrogen, nitrogen, and helium. It is the first time to disclose an unprecedented metal-hydride bond in a fullerene cage. This result shows that the endohedral fullerenes bearing hydrogen species can be synthesized by the arc-discharge technique under an atmosphere of hydrogen. This work demonstrates that a fullerene cage can be an ample carrier to encapsulate unusual cluster moieties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c00681DOI Listing

Publication Analysis

Top Keywords

fullerene cage
12
scandium tetrahedron
8
tetrahedron supported
8
inside fullerene
8
endohedral metallofullerenes
8
nesting structure
8
synthesized arc-discharge
8
atmosphere hydrogen
8
fullerene
6
supported anion
4

Similar Publications

We provide important novel insights into skeletal transformations of fullerene by reporting new cases of cage shrinkage in the most abundant C60 fullerene via a C2 loss. High-temperature (400-500 oC) chlorination of IPR C60 with SbCl5 or SbCl5/SbCl3 mixtures predominantly gives non-IPR C60Cln compounds via Stone-Wales rearrangements, but the present study further reveals non-classical C58Cln chlorofullerenes as by-products. The new C58(NC1)Cl20 and C58(NC1)Cl24 chlorides have been isolated by air-free HPLC and structurally characterized by X-ray crystallography.

View Article and Find Full Text PDF

ThCTi@(6)-C: Th═C Double Bond in a Mixed Actinide-Transition Metal Cluster.

J Am Chem Soc

January 2025

College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.

View Article and Find Full Text PDF

Enhancement of photoinduced reactive oxygen species generation in open-cage fullerenes.

Chem Sci

December 2024

Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain

Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.

View Article and Find Full Text PDF

Endohedral vs exohedral boron in C60: Bonding nature and impact on hot-electron relaxation dynamics.

J Chem Phys

January 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.

Endohedral and exohedral fullerenes have both been employed as electron acceptors in polymer solar cells (PSCs). However, their differences in hot-electron relaxation dynamics remain unclear. Previous studies have shown that the location of a single atom, whether inside or outside the fullerene cage, results in significant differences in charge distribution.

View Article and Find Full Text PDF

In the process of water electrolysis, the oxygen evolution reaction (OER) suffers from a high energy barrier, which has become a key factor restricting the large-scale commercial application of renewable energy technology. Therefore, it is necessary to develop a durable, efficient, low-cost and environmentally friendly OER electrocatalyst. In the present work, a photo-responsive fullerene (C) was encapsulated in the cavity of cobalt-containing flake-like zeolitic imidazolate framework-67 (C@F-ZIF-67).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!