The current outbreak of the pandemic coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) demands its rapid, convenient, and large-scale diagnosis to downregulate its spread within as well as across the communities. But the reliability, reproducibility, and selectivity of majority of such diagnostic tests fail when they are tested either to a viral load at its early representation or to a viral gene mutated during its current spread. In this regard, a selective "naked-eye" detection of SARS-CoV-2 is highly desirable, which can be tested without accessing any advanced instrumental techniques. We herein report the development of a colorimetric assay based on gold nanoparticles (AuNPs), when capped with suitably designed thiol-modified antisense oligonucleotides (ASOs) specific for N-gene (nucleocapsid phosphoprotein) of SARS-CoV-2, could be used for diagnosing positive COVID-19 cases within 10 min from the isolated RNA samples. The thiol-modified ASO-capped AuNPs agglomerate selectively in the presence of its target RNA sequence of SARS-CoV-2 and demonstrate a change in its surface plasmon resonance. Further, the addition of RNaseH cleaves the RNA strand from the RNA-DNA hybrid leading to a visually detectable precipitate from the solution mediated by the additional agglomeration among the AuNPs. The selectivity of the assay has been monitored in the presence of MERS-CoV viral RNA with a limit of detection of 0.18 ng/μL of RNA having SARS-CoV-2 viral load. Thus, the current study reports a selective and visual "naked-eye" detection of COVID-19 causative virus, SARS-CoV-2, without the requirement of any sophisticated instrumental techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c03822 | DOI Listing |
Viruses
December 2024
Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria.
Central nervous system (CNS) infections caused by SARS-CoV-2 are uncommon. This case report describes the clinical progression of a 92-year-old female who developed a persistent neuroinfection associated with SARS-CoV-2. The patient initially presented with progressive fatigue, catarrhal symptoms, and a fever (38.
View Article and Find Full Text PDFViruses
December 2024
Infectious Diseases Laboratory, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78210, Mexico.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in young children. During the COVID-19 pandemic, a significant change in the epidemiology of RSV and other viruses occurred worldwide, leading to a reduction in the circulation of these infectious agents. After the pandemic, the resurgence of seasonal respiratory viruses occurred, but some features of these infections contrast to those registered prior to the pandemic.
View Article and Find Full Text PDFViruses
December 2024
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.
View Article and Find Full Text PDFViruses
November 2024
Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.
View Article and Find Full Text PDFViruses
November 2024
MRC/UVRI & LSHTM Uganda Research Unit, Entebbe 256, Uganda.
The emergence of SARS-CoV-2 variants has heightened concerns about vaccine efficacy, posing challenges in controlling the spread of COVID-19. As part of the COVID-19 Vaccine Effectiveness and Variants (COVVAR) study in Uganda, this study aimed to genotype and characterize SARS-CoV-2 variants in patients with COVID-19-like symptoms who tested positive on a real-time PCR. Amplicon deep sequencing was performed on 163 oropharyngeal/nasopharyngeal swabs collected from symptomatic patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!