Metal-organic framework-based nanomaterials for photocatalytic hydrogen peroxide production.

Phys Chem Chem Phys

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan.

Published: July 2020

As an environmentally friendly and renewable energy source, hydrogen peroxide (H2O2) could be produced photocatalytically through selective two-electron reduction of O2 using effective photocatalysts. Metal organic frameworks (MOFs), as hybrid porous materials consisting of organic linkers and metal oxide clusters, have aroused great interest in the design of effective catalysts for photocatalysis under visible light irradiation due to their unique properties, such as large surface area, good chemical stability, and diverse and tunable chemical components. In this perspective, we highlight our recent progress in the application of various MOF-based nanomaterials for photocatalytic H2O2 production from the selective two-electron reduction of O2 in a single-phase system (acetonitrile) and two-phase system (water/benzyl alcohol). Photocatalytic H2O2 production in the single-phase system achieved a higher activity using NiO as a cocatalyst of the MOF rather than Pt. Photocatalytic H2O2 production in the two-phase system using various hydrophobic MOFs showed further improved activity compared to the single-phase system. It has been possible to design a hydrophobic MOF-based photocatalyst with high activity and stability under recycling conditions. These studies gathered in this perspective revealed the novel application of MOFs in the field of energy production.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01759kDOI Listing

Publication Analysis

Top Keywords

photocatalytic h2o2
12
h2o2 production
12
single-phase system
12
nanomaterials photocatalytic
8
hydrogen peroxide
8
selective two-electron
8
two-electron reduction
8
two-phase system
8
production
5
system
5

Similar Publications

Semiconducting Overoxidized Polypyrrole Nano-Particles for Photocatalytic Water Splitting.

Small

January 2025

UMR 8182, CNRS, Institut de Chimie Moléculaires et des Matériaux d'Orsay, Université Paris-Saclay, Orsay, 91405, France.

Capturing sunlight to fuel the water splitting reaction (WSR) into O and H is the leitmotif of the research around artificial photosynthesis. Organic semiconductors have now joined the quorum of materials currently dominated by inorganic oxides, where for both families of compounds the bandgaps and energies can be adjusted synthetically to perform the Water Splitting Reaction. However, elaborated and tedious synthetic pathways are necessary to optimize the photophysical properties of organic semiconductors.

View Article and Find Full Text PDF

Internal Nanocavity Regulation of Embedded Rare Earth Up-Conversion Nanoparticles for HO Production Operable at Up to 780 nm.

Small

January 2025

XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.

View Article and Find Full Text PDF

Tailoring the surface and interface structures of carbon nitride for enhanced photocatalytic self-Fenton process in pollutant degradation.

J Colloid Interface Sci

January 2025

GuangDong Engineering Technology Research Center of Advanced Polymer Synthesis, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Guangdong 515063 China. Electronic address:

Fenton technology faces significant challenges due to external HO dependency and inadequate Fe regeneration. Constructing a photocatalytic self-Fenton system is a promising strategy, but it is hindered by slow charge dynamics and low mass transfer of reactant ions. Here, we present a multi-engineering co-modified carbon nitride (OCN) for efficient photocatalytic self-Fenton reactions.

View Article and Find Full Text PDF

As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.

View Article and Find Full Text PDF

In the face of escalating environmental challenges such as fossil fuel dependence and water pollution, innovative solutions are essential for sustainable development. In this regard, zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8, act as promising photocatalysts for environmental remediation and renewable energy applications. ZIF-8, a subclass of metal-organic frameworks (MOFs), is renowned for its large specific surface area, high porosity, rapid electron transfer ability, abundant functionalities, ease of designing, controllable properties, and remarkable chemical and thermal stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!