The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks.

Ecol Lett

State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.

Published: August 2020

Understanding how biodiversity and interaction networks change across environmental gradients is a major challenge in ecology. We integrated metacommunity and metanetwork perspectives to test species' functional roles in bird-plant frugivory interactions in a fragmented forest landscape in Southwest China, with consequences for seed dispersal. Availability of fruit resources both on and under trees created vertical feeding stratification for frugivorous birds. Bird-plant interactions involving birds feeding only on-the-tree or both on and under-the-tree (shared) had a higher centrality and contributed more to metanetwork organisation than interactions involving birds feeding only under-the-tree. Moreover, bird-plant interactions associated with large-seeded plants disproportionately contributed to metanetwork organisation and centrality. Consequently, on-the-tree and shared birds contributed more to metanetwork organisation whereas under-the-tree birds were more involved in local processes. We would expect that species' roles in the metanetwork will translate into different conservation values for maintaining functioning of seed-dispersal networks.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13529DOI Listing

Publication Analysis

Top Keywords

contributed metanetwork
12
metanetwork organisation
12
functional roles
8
bird-plant frugivory
8
bird-plant interactions
8
interactions involving
8
involving birds
8
birds feeding
8
metanetwork
6
birds
5

Similar Publications

Background/aims: Crohn's disease (CD) and intestinal tuberculosis (ITB) are gastrointestinal (GI) inflammatory disorders with overlapping clinical presentations but diverging etiologies. The study aims to decipher CD and ITB-associated gut dysbiosis signatures and identify disease-associated co-occurring modules to evaluate whether this dysbiosis signature is a disease-specific trait or is a shared feature across diseases of diverging etiologies.

Methods: Disease-associated gut microbial modules were identified using statistical machine learning and co-abundance network analysis in controls, CD and ITB patients recruited as part of this study.

View Article and Find Full Text PDF

Species-rich natural and semi-natural ecosystems are under threat owing to land use change. To conserve the biodiversity associated with these ecosystems, we must identify and target conservation efforts towards functionally important species and supporting habitats that create connections between remnant patches in the landscape. Here, we use a multi-layer network approach to identify species that connect a metanetwork of plant-bee interactions in remnant semi-natural grasslands which are biodiversity hotspots in European landscapes.

View Article and Find Full Text PDF

The current biodiversity crisis requires efficient approaches to address the ongoing impoverishment of natural communities and the depletion of ecosystem services and functions. In this sense, identifying key species that promote the functioning of ecological processes can be strategic to guide actions aiming at the conservation and restoration of biodiversity. Node-level metrics in interaction networks can be helpful to identify those key species, as they measure the role each species plays in organizing the interactions.

View Article and Find Full Text PDF

The death of localizationism: The concepts of functional connectome and neuroplasticity deciphered by awake mapping, and their implications for best care of brain-damaged patients.

Rev Neurol (Paris)

November 2021

Department of Neurosurgery, Gui-de-Chauliac Hospital, Montpellier University Medical Center, 80, avenue Augustin-Fliche, 34295 Montpellier, France; National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Team "Brain Plasticity, Stem Cells and Low-Grade Gliomas", Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France. Electronic address:

Although clinical neurology was mainly erected on the dogma of localizationism, numerous reports have described functional recovery after lesions involving presumed non-compensable areas in an inflexible view of brain processing. Here, the purpose is to review new insights into the functional connectome and the mechanisms underpinning neural plasticity, gained from intraoperative direct electrostimulation mapping and real-time behavioral monitoring in awake patients, combined with perioperative neuropsychological and neuroimaging data. Such longitudinal anatomo-functional correlations resulted in the reappraisal of classical models of cognition, especially by highlighting the dynamic interplay within and between neural circuits, leading to the concept of meta-network (network of networks), as well as by emphasizing that subcortical connectivity is the main limitation of neuroplastic potential.

View Article and Find Full Text PDF

The contribution of urban greenspaces to support biodiversity and provide benefits for people is increasingly recognized. However, ongoing management practices favor vegetation oversimplification, often limiting greenspaces to lawns and tree canopy rather than multi-layered vegetation that includes under- and midstorey, and the use of nonnative species. These practices hinder the potential of greenspaces to sustain indigenous biodiversity, particularly for taxa like insects that rely on plants for food and habitat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!