To face SARS-CoV-2 pandemic various attempts are made to identify potential effective treatments by repurposing available drugs. Among them, indomethacin, an anti-inflammatory drug, was shown to have potent in-vitro antiviral properties on human SARS-CoV-1, canine CCoV, and more recently on human SARS-CoV-2 at low micromolar range. Our objective was to show that indomethacin could be considered as a promising candidate for the treatment of SARS-CoV-2 and to provide criteria for comparing benefits of alternative dosage regimens using a model-based approach. A multi-stage model-based approach was developed to characterize % of recovery and viral load in CCoV-infected dogs, to estimate the PK of indomethacin in dog and human using published data after administration of immediate (IR) and sustained-release (SR) formulations, and to estimate the expected antiviral activity as a function of different assumptions on the effective exposure in human. Different dosage regimens were evaluated for IR formulation (25 mg and 50 mg three-times-a-day, and 25 mg four-times-a-day), and SR formulation (75 mg once and twice-a-day). The best performing dosing regimens were: 50 mg three-times-a-day for the IR formulation, and 75 mg twice-a-day for the SR formulation. The treatment with the SR formulation at the dose of 75 mg twice-a-day is expected to achieve a complete response in three days for the treatment in patients infected by the SARS-CoV-2 coronavirus. These results suggest that indomethacin could be considered as a promising candidate for the treatment of SARS-CoV-2 whose potential therapeutic effect need to be further assessed in a prospective clinical trial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237801 | PMC |
http://dx.doi.org/10.1007/s10928-020-09690-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!