Background: Transcranial direct current stimulation (tDCS) is a neuromodulation tool used to modify the cognitive function in subjects. There is a paucity of data on tDCS' effect on cognitive function during Ramadan fasting. This paper aims to assess the effect of tDCS of three brain areas, including the right dorsolateral prefrontal cortex (DLPFC), posterior parietal cortex (PPC), and cerebellum on cognitive function, and obtain safety data in healthy adults during Ramadan fasting.
Methods And Material: A total of 42 healthy, right-handed participants were randomly assigned to one of the 6 stimulation groups: active (anodal)-tDCS of right DLPFC, PPC, and cerebellum; or sham for DLPFC, PPC, and cerebellum after 8 h of fasting for Ramadan. Safety data and cognitive function, such as attention-switching tasks (AST), were obtained by employing the Cambridge Neuropsychological Test Automated Battery (CANTAB) before and after each tDCS session. The cognitive function outcome variables were the response time and the percentage of correct answers in AST. For sham stimulation, the placement of the electrodes was the same as for the active stimulation.
Results: An improvement in performance time in attention tasks was observed; however, it did not reach a significant level after anodal stimulation of the DLPFC, PPC, and cerebellum. Overall, there were no statistically significant differences between the active and sham tDCS groups in cognitive function. There were no significant side effects of tDCS during fasting for any group.
Conclusions: Our data suggest that there are variable effects of tDCS on attention tasks during Ramadan fasting. TDCS appears to be safe, well-tolerated and adhered to the international standard of safety in the local population during Ramadan fasting. Further large sample size studies should be conducted to validate the current study findings and reach better conclusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231976 | PMC |
http://dx.doi.org/10.1016/j.ibror.2020.03.002 | DOI Listing |
J Neuropsychol
January 2025
Department of Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands.
Up to 45% of patients with Parkinson's disease (PD) experience impulse control disorders (ICDs), characterized by a loss of voluntary control over impulses, drives or temptations. This study aimed to investigate whether previously identified genetic and psychiatric risk factors interact towards the development of ICDs in PD. A total of 278 de novo PD patients (ICD-free at enrollment) were selected from the Parkinson's Progression Markers Initiative database.
View Article and Find Full Text PDFBMC Psychol
January 2025
School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.
Background: Major decision-making self-efficacy (MDMSE) is an important indicator of students' ability to make effective decisions in specialty selection. It has implications for students' personal growth and career counselling interventions. While the previous MDMSES has been widely used in the context of China's New College Entrance Examination reform, the increased choice of majors and advancement of career planning necessitate a new scale to assess high school students' MDMSE levels.
View Article and Find Full Text PDFBMC Psychiatry
January 2025
School of Mental Health, Bengbu Medical University, Bengbu, Anhui, 233030, China.
Background: Although impaired cognitive control is common during the acute detoxification phase of substance use disorders (SUD) and is considered a major cause of relapse, it remains unclear after prolonged methadone maintenance treatment (MMT). The aim of the present study was to elucidate cognitive control in individuals with heroin use disorder (HUD) after prolonged MMT and its association with previous relapse.
Methods: A total of 63 HUD subjects (41 subjects with previous relapse and 22 non-relapse subjects, mean MMT duration: 12.
Mol Neurobiol
January 2025
Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India.
Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!