MTA1 Promotes Hepatocellular Carcinoma Progression by Downregulation of DNA-PK-Mediated H1.2 Phosphorylation.

Front Oncol

Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, China.

Published: May 2020

Global incidence and mortality associated with hepatocellular carcinoma (HCC) is steadily increasing. Metastasis-associated 1 (MTA1) can induce tumorigenesis and metastatic progression in HCC. However, the mechanistic details of MTA1-mediated regulation of HCC has not been completely defined. Epigenetic histone modification is closely related to tumor development. Histone cluster 1 H1 family member c (H1.2) is important for epigenetic histone modification and chromatin remodeling; however, whether it has a role in HCC tumorigenesis is not known. In the current study, we confirmed that MTA1 promoted HCC cell growth and migration. Our results further show that MTA1 inhibited the phosphorylation of histone cluster 1 H1 family member c (H1.2) at threonine-146 residue (T146) (H1.2). MTA1 inhibited H1.2 by mediating proteasomal degradation of the DNA protein kinase (DNA-PK). Pharmacological inhibition of proteasomal degradation of DNA-PK or genetic ablation of E3 ligase mouse double minute 2 (MDM2) rescued expression of DNA-PK, and subsequent phosphorylation of H1.2. MTA1's role in HCC was inhibited by ectopic expression of H1.2 in HCC cell lines. Our results showed that H1.2 can bind to MTA1 target genes. Collectively, our study confirms that MTA1 functions as an oncogene and promotes HCC progression. The epigenetic histone modifier H1.2 exerts critical role in the regulation of MTA1-induced tumorigenesis. MTA1 regulates posttranslational activation of H1.2 by regulating the cognate kinase, DNA-PK, via the ubiquitin proteasome system. MTA1 expression was inversely correlated to both DNA-PK and phosphorylated H1.2 in HCC tissue specimens compared to tumor adjacent normal hepatic tissue, revealing that the MTA1/MDM2/DNA-PK/H1.2 is an important therapeutic axis in HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218115PMC
http://dx.doi.org/10.3389/fonc.2020.00567DOI Listing

Publication Analysis

Top Keywords

epigenetic histone
12
h12
11
hcc
10
mta1
9
hepatocellular carcinoma
8
histone modification
8
histone cluster
8
cluster family
8
family member
8
member h12
8

Similar Publications

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).

View Article and Find Full Text PDF

Background: Recent research has highlighted lactate's crucial role in epigenetic regulation, particularly by influencing histone modifications that drive the initiation and progression of hepatocellular carcinoma (HCC). While mitochondria are known to regulate tumor behavior, the interaction between lactate metabolism and mitochondrial function in cancer tissues remains underexplored. Understanding this relationship may provide deeper insights into tumor metabolic reprogramming and reveal novel therapeutic targets for HCC and other malignancies.

View Article and Find Full Text PDF

Epigenetic regulation and metabolism are connected. Epigenetic regulators, like the SIN3 complex, affect the expression of a wide range of genes, including those encoding metabolic enzymes essential for central carbon metabolism. The idea that epigenetic modifiers can sense and respond to metabolic flux by regulating gene expression has long been proposed.

View Article and Find Full Text PDF

Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD.

View Article and Find Full Text PDF

A complex interplay between histone variants and DNA methylation.

J Exp Bot

January 2025

Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France.

Nucleosomes, the chromatin building blocks, play an important role in controlling DNA and chromatin accessibility. Nucleosome remodeling and the incorporation of distinct histone variants confer unique structural and biochemical properties, influencing the targeting of multiple epigenetic pathways, particularly DNA methylation. This stable epigenetic mark suppresses transposable element expression in plants and mammals, serving as an additional layer of chromatin regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!