Background: The aim of this study was to compare the film thickness and antibacterial properties of mineral trioxide aggregate-propylene glycol (MTA-PG) as a sealer in comparison with MTA Fillapex and AH26 sealers.
Materials And Methods: In these study the antibacterial property of the sealers was evaluated using direct contact test in fresh and set states. was incubated in direct contact with fresh and set materials. The growth of exposed bacteria was evaluated by counting colony-forming units (CFUs) after 10 min and 1 h in the culture medium. The film thickness of sealers was measured according to the International Standard Organization 6876/2012. The data were statistically analyzed using an independent -test and repeated measures of ANOVA. The level of significance was set at 0.05.
Results: CFU means in AH26 was significantly more than other groups ( < 0.0001), but there was no difference between MTA-PG and MTA Fillapex. The mean of CFUs in set AH26 after 1 h exposure was significantly >10-min exposure ( = 0.006). The mean film thickness values of MTA Fillapex, MTA-PG, and AH26 were 57.3, 50.9, and 78.3 μm, respectively.
Conclusion: MTA-Fillapex and MTA-PG showed distinct antibacterial effect. AH26 showed more antibacterial effect in fresh state in comparison with set state. The film thickness of MTA-PG and MTA-Fillapex was significantly less than AH26.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224264 | PMC |
Langmuir
January 2025
Univ. Rouen Normandie, Normandie Univ., SMS, UR 3233, F-76000 Rouen, France.
It has been shown that depositing ketoprofen as thin films on glass substrates has a stabilizing effect on the amorphous state of ketoprofen. Polyethylene glycol ( = 6000 g/mol) was mixed with ketoprofen in a wide range of concentrations. Amorphous thin films were prepared by spin coating and subjected to storage conditions with different levels of relative humidity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
Surface fogging affects the light transmittance of various transparent materials and poses potential safety hazards. Superhydrophilic TiO surfaces can effectively prevent fogging by promoting continuous water film formation; however, they often struggle to maintain stable hydrophilicity and adhesion on plastic films. Self-cleaning and antifogging coatings on plastic substrates are crucial for applications requiring long-term clarity and minimal maintenance costs.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFACS Nano
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1-20 nm, onto various substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!