Homeoproteins are a class of transcription factors sharing the unexpected property of intercellular trafficking that confers to homeoproteins a paracrine mode of action. Homeoprotein paracrine action participates in the control of patterning processes, including axonal guidance, brain plasticity and boundary formation. Internalization and secretion, the two steps of intercellular transfer, rely on unconventional mechanisms, but the cellular mechanisms at stake still need to be fully characterized. Thanks to the design of new quantitative and sensitive assays dedicated to the study of homeoprotein transfer within HeLa cells in culture, we demonstrate a core role of phosphatidylinositol (4,5)-bisphosphate (PIP) together with cholesterol in the translocation of the homeobox protein engrailed-2 (EN2) across the plasma membrane. By using drug and enzyme treatments, we show that both secretion and internalization are regulated according to PIP levels. The requirement for PIP and cholesterol in EN2 trafficking correlates with their selective affinity for this protein in artificial bilayers, which is drastically decreased in a paracrine-deficient mutant of EN2. We propose that the bidirectional plasma membrane translocation events that occur during homeoprotein secretion and internalization are parts of a common process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.244327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!