Interactions of PatA with the Divisome during Heterocyst Differentiation in .

mSphere

Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC, Seville, Spain

Published: May 2020

The organismic unit is a filament of communicating cells. Under conditions of nitrogen scarcity, some cells along the filament differentiate into heterocysts, which are specialized in the fixation of atmospheric N and provide the vegetative cells with N fixation products. At a certain stage, the differentiation process becomes irreversible, so that even when nitrogen is replenished, no return to the vegetative cell state takes place, possibly as a consequence of loss of cell division capacity. Upon N-stepdown, midcell FtsZ-rings were detected in vegetative cells, but not in differentiating cells, and this was also the case for ZipN, an essential protein that participates in FtsZ tethering to the cytoplasmic membrane and divisome organization. Later, expression of was arrested in mature heterocysts. PatA is a protein required for the differentiation of intercalary heterocysts in The expression level of the gene was increased in differentiating cells, and a mutant strain lacking PatA exhibited enhanced FtsZ-rings. PatA was capable of direct interactions with ZipN and SepF, another essential component of the Z-ring. Thus, PatA appears to promote inhibition of cell division in the differentiating cells, allowing progress of the differentiation process. PatA, which in mature heterocysts was detected at the cell poles, could interact also with SepJ, a protein involved in production of the septal junctions that provide cell-cell adhesion and intercellular communication in the filament, hinting at a further role of PatA in the formation or stability of the intercellular structures that are at the basis of the multicellular character of is a cyanobacterial model that represents an ancient and simple form of biological multicellularity. The organism is a filament of cohesive and communicating cells that can include cells specialized in different tasks. Thus, under conditions of nitrogen scarcity, certain cells of the filament differentiate into heterocysts, which fix atmospheric nitrogen and provide organic nitrogen to the rest of cells, which, in turn, provide heterocysts with organic carbon. Heterocyst differentiation involves extensive morphological, biochemical, and genetic changes, becoming irreversible at a certain stage. We studied the regulation during heterocyst differentiation of several essential components of the cell division machinery and found that protein PatA, which is required for differentiation and is induced in differentiating cells, interacts with essential cell division factors and destabilizes the cell division complex. This suggests a mechanism for establishment of commitment to differentiation by inhibition of cell division.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380572PMC
http://dx.doi.org/10.1128/mSphere.00188-20DOI Listing

Publication Analysis

Top Keywords

cell division
24
differentiating cells
16
heterocyst differentiation
12
cells
12
differentiation
8
communicating cells
8
conditions nitrogen
8
nitrogen scarcity
8
scarcity cells
8
cells filament
8

Similar Publications

Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

View Article and Find Full Text PDF

Purpose: Asparaginase (ASN) is a critical component of pediatric ALL protocols. Until recently, ASN was available in three formulations: native Escherichia coli, PEGylated E. coli (PEG), and Erwinase, with native E.

View Article and Find Full Text PDF

The growing sophistication of tumor molecular profiling has helped to slowly transition oncologic care toward a more personalized approach in different tumor types, including in bladder cancer. The National Comprehensive Cancer Network recommends that all patients with stage IVA and stage IVB urothelial carcinoma have molecular analysis that integrates at least testing to help facilitate the selection of future therapeutic options. Sequencing of tumor-derived tissue is the mainstay to obtain this genomic testing, but as in other cancers, there has been extensive research into the integration of liquid biopsies in longitudinal management.

View Article and Find Full Text PDF

A major challenge in the field of synthetic motors relates to mimicking the precise, motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA.

View Article and Find Full Text PDF

Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!