Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Low-Voltage Ride-Through (LVRT) capacity of the Doubly Fed Induction Generator (DFIG) is one of the important requirements to ensure power systems stability, incorporating wind energy. While traditional control schemes present inappropriate performances under disturbances, this paper introduces a novel Neural Inverse Optimal Control (N-IOC) scheme for LVRT capacity enhancing. The developed controller is synthesized using recurrent high order neural network, which is utilized to build-up the DFIG and the DC-link dynamics. Based on such identifier, the proposed N-IOC is synthesized. This controller is experimentally validated on 1∕4 HP DFIG prototype considering various grid disturbances. Results illustrate the proposed controller effectiveness for LVRT enhancement without required decomposition process and/or any additional device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2020.05.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!