Mesoporous silica is often employed as a coating material in core-shell nanoparticles to decrease the possibility of sintering or aggregation of the core particles. In this work, we discovered a surprising morphological transformation during the sulfidation and regeneration (oxidation) of core-shell CuO@mSiO materials designed for HS capture. Although CuS cores were still encapsulated within the silica shells after in situ sulfidation, hollow silica shells formed during the regeneration step as CuO leached out of the shell and aggregated into larger particles. The successful sulfidation of pristine CuO@mSiO was facilitated by the restraining effect of silica shells on lattice growth from CuO into CuS, and the mesopores allowed for volume expansion. The phase and morphology changes during the regeneration (oxidation) process leading to the hollow shells were investigated by X-ray diffraction and transmission electron microscopy. It was observed that the cores remained encaged during the disproportionation of CuS to CuS, which is the first step in the oxidation of CuS. However, voids were generated when CuS was oxidized and reacted with water generated from the condensation of silica. A possible mechanism for this transformation involves the outward diffusion of copper ions through the mesoporous silica, leading to the migration of core particles. This migration was further accelerated by the elevated temperature in the regeneration process and promoted by the formation of the copper sulfate hydroxide through the reaction with water. This work provides key insights into the chemical stability of such core-shell structures under the influence of diffusion-driven structural transformations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c00958DOI Listing

Publication Analysis

Top Keywords

silica shells
16
mesoporous silica
12
core particles
8
regeneration oxidation
8
silica
7
cus
6
shells
5
diffusive formation
4
formation hollow
4
hollow mesoporous
4

Similar Publications

Silica Nanoparticle-Protein Aggregation and Protein Corona Formation Investigated with Scattering Techniques.

ACS Appl Mater Interfaces

January 2025

School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.

Protein-nanoparticle interactions and the resulting corona formation play crucial roles in the behavior and functionality of nanoparticles in biological environments. In this study, we present a comprehensive analysis of protein corona formation with superfolder green fluorescent protein (sfGFP) and bovine serum albumin in silica nanoparticle dispersions using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the first time, we subtracted the scattering of individual proteins in solution and individual nanoparticles from the protein-nanoparticle complexes.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

Thyroid-Targeted Nano-Bombs Empower HIFU for Graves' Disease.

Adv Sci (Weinh)

January 2025

The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.

Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.

View Article and Find Full Text PDF

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!