Spin Seebeck effect (SSE) is a key factor in the spin caloritronics field, and extensive studies have been performed for potential spin thermoelectric modulator device applications. However, the performance of spin current generation was not high enough, and this is due to the weak yield of the SSE. Despite the many studies for the SSE in bulk materials, no reports are available yet in the pure two-dimensional (2D) ferromagnetic material. Hereby, we investigated the SSE of two-dimensional ferromagnetic CrI using the Boltzmann transport approach allowing diffusive scattering. We obtained a giant effective spin Seebeck effect of 1450 μV K, and this value is at least 4-5 times larger than previously reported values in bulk systems. Therefore, our finding may suggest that 2D CrI can be a potential material to open another perspective for 2D materials in the spin caloritronics field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab94e0 | DOI Listing |
Adv Mater
January 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
The chirality of magnons, exhibiting left- and right-handed polarizations analogous to the counterparts of spin-up and spin-down, has emerged as a promising paradigm for information processing. However, the potential of this paradigm is constrained by the controllable excitation and transmission of chiral magnons. Here, the magnon transmission is explored in the GdFeO/NiO/Pt structures.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA.
Superconducting spintronics explores the interplay between superconductivity and magnetism, sparking substantial interest in nonunitary superconductors as a platform for magneto-superconducting phenomena. However, identifying nonunitary superconductors remains challenging. We demonstrate that spin current driven by thermal gradients sensitively probes the nature of the condensate in nonunitary superconductors.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yutian Road 500, Shanghai, 200083, China.
Phys Chem Chem Phys
December 2024
College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
Inspired by the recently reported novel two-dimensional material BCP, we performed one-dimensional shearing along the zigzag direction to obtain four BCP nanoribbons with various edge atom combinations. An asymmetric hydrogen passivation scheme was employed to modulate the electronic properties and successfully open the band gap, especially the 2H-1H passivation with dihydrogenation and monohydrogenation at the top and bottom edges, respectively, achieving bipolar magnetic semiconductors with edge P-atoms contributing to the main magnetism. Furthermore, three crucial spin-polarized transmission spectra yielded a significant spin-dependent Seebeck effect (SDSE), displaying superior thermoelectric conversion capabilities by generating pure spin currents.
View Article and Find Full Text PDFSci Rep
November 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!