The influence of the timing of inoculation (sequential and simultaneous alcoholic fermentation (AF)/malolactic fermentation (MLF)) on the chemical and sensory properties of red wines was studied. The impact of the encapsulation of Oenococcus oeni into SiO-alginate hydrogel (Si-ALG) and the addition of lysozyme in wines inoculated with encapsulated bacteria were also analysed. There was a significant influence of the timing of inoculation on the volatile composition of the wines just as on the amino acid and biogenic amine content. The wines produced by simultaneous AF/MLF showed the highest contents of some volatile compounds, such as ethyl esters and terpenes, as well as amino acids and tyramine. Bacterial encapsulation affected the volatile and amino acid profile of the wines, while the biogenic amine composition was not modified. The chemical composition of the wines was not altered by the presence of lysozyme. A trained panel did not perceive substantial differences between treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.126920 | DOI Listing |
Nanoscale Adv
January 2025
Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt +202 2615 2559.
Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China.
is widely recognized for its probiotic benefits and has been widely used in food production. While biofilms are typically associated with pathogenic bacteria, they also served as a self-protective mechanism formed by microorganisms in an adverse environments. In recent years, relevant studies have revealed the excellent characteristics of biofilms, offering new insights into their potential applications in the food industry.
View Article and Find Full Text PDFRev Argent Microbiol
January 2025
Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
Methicillin-resistant Staphylococcus aureus (MRSA) causes a wide range of infections and contributes to elevated morbidity, mortality, and healthcare costs. Herbal compounds combined with drug delivery systems could be an effective alternative option for treating resistant bacteria. This study evaluates the antimicrobial prowess of carvacrol-loaded niosomes against MRSA strains.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:
Biomass foam with porous structure has broad application prospects in thermal energy management. However, traditional foams can only passively insulate heat, unable to effectively store thermal energy and prolong the insulation time. In this work, microcapsules rich in paraffin were prepared using the Pickering emulsion template method with phosphorylated cellulose nanocrystals (CNC) as an emulsifier.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China. Electronic address:
Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!