AI Article Synopsis

  • Organophosphorus flame retardants (PFRs) are contaminants found in various environments, including the Arctic, with a notable study conducted near Ny-Ålesund, Svalbard.
  • Seven types of PFRs were identified in local water samples, showing a significant concentration difference, where chlorinated PFRs were 3-4 times more prevalent than their non-chlorinated counterparts.
  • The study linked PFR pollution to local human activities, industrial processes, and environmental factors, revealing that sediments also contained nine types of PFRs, influenced by their chemical properties.

Article Abstract

Organophosphorus flame retardants (PFRs) are contaminants of emerging concern which have been detected globally. However, little information on PFRs in the Arctic freshwater environment is currently available. In this study, both hydrophilic and hydrophobic PFRs in the water and sediment of four areas (town, surroundings, coastal marine water, and glacier melt runoff) near Ny-Ålesund Svalbard were investigated by time-integrated passive sampling (water) and grab sampling (sediment). Seven kinds of PFRs were found in the Arctic waters with individual freely dissolved concentrations from 0.007 ng L to 355 ng L, and the concentrations of chlorinated PFRs were 3-4 orders of magnitude higher than those of non-chlorinated PFRs. The distribution of different PFRs in freshwater showed significant spatial differences among the different areas, and the town was found to have most kinds of PFRs and highest PFRs concentrations. The sources and transport of different kinds of PFRs were explored based on a spatial overlay analysis of the contaminant distributions, environmental conditions, and PFR applications. As a result, human settlements, industrial activities, atmospheric deposition, and transportation in Ny-Ålesund were proposed to be related to the pollution of different PFRs at Ny-Ålesund. The PFRs in the inshore marine water were found to be affected by both local ship contamination and ocean current transport. Furthermore, nine PFRs were detected in the sediments of Ny-Ålesund. Accumulation of different PFRs in the Arctic sediment was found to be dominated by their physico-chemical properties (polarity).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.114792DOI Listing

Publication Analysis

Top Keywords

pfrs
14
pfrs arctic
12
kinds pfrs
12
sources transport
8
organophosphorus flame
8
flame retardants
8
water sediment
8
ny-Ålesund svalbard
8
areas town
8
marine water
8

Similar Publications

New insight into enhanced permanganate oxidation by lignocellulose-derived biochar: The overlooked role of persistent free radicals.

Water Res

December 2024

The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:

Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.

View Article and Find Full Text PDF

Proposal: Bold New Indications for Transcatheter Pulmonary Flow Restrictors.

Pediatr Cardiol

January 2025

Pediatric Heart Center, Johann-Wolfgang-Goethe University Clinic, Theodor-Storm-Kai 7, 60596, Frankfurt, Germany.

This proposal presents a proof of concept for the use of pulmonary flow restrictors (PFRs) based on MVP™-devices, drawing from clinical experience, and explores their potential role in the management of newborns with hypoplastic left heart syndrome (HLHS), other complex left heart lesions, and infants with end-stage dilated cardiomyopathy (DCM). At this early stage of age, manually adjusted PFRs can be tailored to patient's size and hemodynamic needs. Although currently used off-label, PFRs have substantial potential to improve outcomes in these vulnerable patient populations.

View Article and Find Full Text PDF

Electron transfer tuning for persulfate activation via the radical and non-radical pathways with biochar mediator.

J Hazard Mater

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan 610059, P.R. China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P.R. China. Electronic address:

Electron mediator-based in-situ chemical oxidation (ISCO) offers a novel strategy for groundwater remediation due to diverse reaction pathways. However, distinguishing and further tuning the reaction pathway remains challenging. Herein, biochar as an electron mediator targeted active peroxysulphate (PDS) via the radical or non-radical pathway.

View Article and Find Full Text PDF

Three-dimensionally structured MoS@biochar breaks through the bottleneck in antibiotic wastewater treatment: Greater efficiency and self-motivated oxidation pathway.

J Hazard Mater

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:

Two-dimensional (2D) MoS has been widely used to remove antibiotics. However, low selectivity for antibiotic pollutants, dependence on applied energy and oxidant, and secondary contamination are still the bottlenecks of this system for treating antibiotic wastewater. In this study, we proposed a three-dimensional (3D) material (3MoS/BMBC@MF) based on MoS and biochar with melamine sponge as the backbone.

View Article and Find Full Text PDF

In , phosphoproteins (P) are essential polymerase cofactors, forming oligomers and interacting with viral components to facilitate replication. Previous studies have demonstrated that a P-derived peptide (PFr) from the respiratory syncytial virus (RSV), containing the oligomerization domain (OD) and C-terminal domain (CTD), effectively inhibits RSV replication. Here, we extend this approach to paramyxoviruses, including HPIV3, MeV and MuV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!