Multiple particle tracking (MPT) microrheology was employed for monitoring the development of extracellular matrix (ECM) mechanical properties in the direct microenvironment of living cells. A customized setup enabled us to overcome current limitations: (i) Continuous measurements were enabled using a cell culture chamber, with this, matrix remodeling by fibroblasts in the heterogeneous environment of macroporous scaffolds was monitored continuously. (ii) Employing tracer laden porous scaffolds for seeding human mesenchymal stem cells (hMSCs), we followed conventional differentiation protocols. Thus, we were, for the first time able to study the massive alterations in ECM elasticity during hMSC differentiation. (iii) MPT measurements in 2D cell cultures were enabled using a long distance objective. Exemplarily, local mechanical properties of the ECM in human umbilical vein endothelial cell (HUVEC) cultures, that naturally form 2D layers, were investigated scaffold-free. Using our advanced setup, we measured local, apparent elastic moduli G in a range between 0.08 and 60 Pa. For fibroblasts grown in collagen-based scaffolds, a continuous decrease of local matrix elasticity resulted during the first 10 hours after seeding. The osteogenic differentiation of hMSC cells cultivated in similar scaffolds, led to an increase of G by 100 %, whereas after adipogenic differentiation it was reduced by 80 %. The local elasticity of ECM that was newly secreted by HUVECs increased significantly upon addition of protease inhibitor and in high glucose conditions even a twofold increase in G was observed. The combination of these advanced methods opens up new avenues for a broad range of investigations regarding cell-matrix interactions and the propagation of ECM mechanical properties in complex biological systems. STATEMENT OF SIGNIFICANCE: Cells sense the elasticity of their environment on a micrometer length scale. For studying the local elasticity of extracellular matrix (ECM) in the direct environment of living cells, we employed an advanced multipleparticle tracking microrheology setup. MPT is based on monitoring the Brownian motion oftracer particles, which is restricted by the surrounding network. Network elasticity can thusbe quantified. Overcoming current limitations, we realized continuous investigations of ECM elasticityduring fibroblast growth. Furthermore, MPT measurements of stem cell ECM showed ECMstiffening during osteogenic differentiation and softening during adipogenic differentiation.Finally, we characterized small amounts of delicate ECM newly secreted in scaffold-freecultures of endothelial cells, that naturally form 2D layers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2020.04.053DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
ecm
9
matrix remodeling
8
extracellular matrix
8
matrix ecm
8
ecm mechanical
8
living cells
8
current limitations
8
mpt measurements
8
naturally form
8

Similar Publications

Surface induced crystallization/amorphization of phase change materials.

Nanotechnology

January 2025

MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.

Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

Determinants of vacancy formation and migration in high-entropy alloys.

Sci Adv

January 2025

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.

Vacancies are crucial for the radiation resistance, strength, and ductility of high-entropy alloys (HEAs). However, complex electronic interactions resulting from chemical disorder prohibit the quantification of vacancy formation energy () and migration barriers (). Herein, we propose an electronic descriptor χ (electronegativity χ and valence-electron number ) to quantify the bonding strength of constituents on the basis of the tight-binding model, which allows us to build analytical models to achieve the site-to-site quantification of and .

View Article and Find Full Text PDF

Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!