Arabidopsis thaliana AKR2A plays an important role in plant responses to cold stress. However, its exact function in plant resistance to cold stress remains unclear. In the present study, we found that the contents of very long-chain fatty acids (VLCFAs) in akr2a mutants were decreased, and the expression level of KCS1 was also reduced. Overexpression of KCS1 in the akr2a mutants could enhance VLCFAs contents and chilling tolerance. Yeast-2-hybrid and bimolecular fluorescence complementation (BIFC) results showed that the transmembrane motif of KCS1 interacts with the PEST motif of AKR2A both in vitro and in vivo. Overexpression of KCS1 in akr2a mutants rescued akr2a mutant phenotypes, including chilling sensitivity and a decrease of VLCFAs contents. Moreover, the transgenic plants co-overexpressing AKR2A and KCS1 exhibited a greater chilling tolerance than the plants overexpressing AKR2A or KCS1 alone, as well as the wild-type. AKR2A knockdown and kcs1 knockout mutants showed the worst performance under chilling conditions. These results indicate that AKR2A is involved in chilling tolerance via an interaction with KCS1 to affect VLCFA biosynthesis in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496556 | PMC |
http://dx.doi.org/10.1111/tpj.14848 | DOI Listing |
Expert Opin Drug Saf
December 2024
Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Fabry disease (FD), an X-linked lysosomal disorder, is marked by a lack of alpha-galactosidase A (α-Gal A). Agalsidase beta, a recombinant form of α-Gal A, is fundamental to enzyme replacement therapy for FD but requires close monitoring for adverse events (AEs).
Research Design And Methods: This study retrospectively analyzed the Food and Drug Administration Adverse Event Reporting System (FAERS) database for agalsidase beta-related AEs.
Commun Biol
December 2024
Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
Tolerance of chilling dictates the geographical distribution, establishment, and productivity of C crops. Chilling reduces enzyme rate, limiting the sink for the absorbed light energy leading to the need for quick energy dissipation via non-photochemical quenching (NPQ). Here, we characterize NPQ upon chilling in three Miscanthus accessions representing diverse chilling tolerance in C grasses.
View Article and Find Full Text PDFChilling is an important limiting factor for seed germination of soybean ( [L.] Merr.).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Polyamines (PAs), such as putrescine, spermine, and spermidine, are bioactive molecules that play a vital role in plant responses to stresses. Although they are frequently applied to achieve higher levels of stress tolerance in plants, their function in seed biology is still not fully understood. PAs have been described in only a limited number of studies as seed priming agents, but most of the data report only the physiological and biochemical PA effects, and only a few reports concern the molecular mechanisms.
View Article and Find Full Text PDFGenomics
December 2024
College of Agriculture and Biology, Liaocheng University, Liaocheng, China. Electronic address:
Chilling stress seriously affects the growth and yield of tomato. Anthocyanin is a typical chilling-induced metabolite with strong antioxidant activity and photoprotective capacity. Here, we found that anthocyanin was also involved in ascorbic acid biosynthesis and glycolysis under chilling stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!