The Chinese government adheres to the innovation driven strategy and emphasizes that technological innovation is the strategic support for improving social productivity and comprehensive national strength. This paper discusses the mechanism of technological innovation and regional economic co-evolution, and constructs an index system to assess them based on the principles of synergy and systematics. The authors use a dynamic coupling model to study the law of the cooperative evolution of composite systems and geo-detector methods to reveal the main factors controlling the degree of coordination among them. The results show that the total factor productivity of China's high-tech industry showed a "W"-type trend of change from 2006 to 2016, and the other indices exhibited a volatile trend. The total factor productivity, technical efficiency, scale efficiency, pure technical efficiency, and technological progress increased by 37%, 13.3%, 3.9%, 9%, and 20.8%, respectively. There was a significant spatial difference in changes in total factor productivity, forming a core-edge spatial pattern with the middle and upper reaches of the Yangtze River as the center of concentration. Most of China's technological innovation and regional economic complex systems were in a state of interactive development from 2007 to 2016, except in the three northeastern provinces of Zhejiang, Shanghai, and the western part of the country. The degree of coupling of the other provinces showed an increasing trend, and the overall degree of coupling exhibited the spatial pattern of Central > Eastern > Western > Northeastern. The three most influential factors for the degree of coupling of China's provincial complex system were the gross domestic product, efficiency of technological innovation, and expenditure on research and development, whereas the three most important factors affecting the degree of coupling of complex systems were the efficiency of technological innovation, gross domestic product, and number of high-tech enterprises as well as research and development personnel, respectively, in the eastern, central, western, and northeastern regions. Finally, the paper puts forward the suggestions of regional innovation driven coordinated development, technology innovation and regional economic coordinated development, in order to provide reference for the high-quality economic development of developing countries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239604 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231335 | PLOS |
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou 310058, China. Electronic address:
Bioresour Technol
January 2025
Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Geographical Science, Nanjing Normal University, Nanjing, 210023, China.
Urban agglomerations are central to global economic growth and the shift towards green development, particularly in developing countries. This study examines regional comparisons and variations in green development mechanisms within urban agglomerations to better understand their spatiotemporal patterns. An input-output indicator system was developed, accounting for social benefits and carbon emissions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!