The effects of elevated levels of radiation contribute to the instability of pharmaceutical formulations in space compared to those on earth. Existing technologies are ineffective at maintaining the therapeutic efficacies of drugs in space. Thus, there is an urgent need to develop novel space-hardy formulations for preserving the stability and efficacy of drug formulations. This work aims to develop a novel approach for the protection of space pharmaceutical drug molecules from the radiation-induced damage to help extend or at least preserve their structural integrity and potency. To achieve this, free radical scavenging antioxidant, Trolox was conjugated on the surface of poly-lactic-co-glycolic acid (PLGA) nanoparticles for the protection of a candidate drug, melatonin that is used as a sleep aid medication in International Space Station (ISS). Melatonin-PLGA-PLL-Trolox nanoparticle as named as PolyRad was synthesized employing single oil in water (o/w) emulsion solvent evaporation method. PolyRad is spherical in shape and has an average diameter of ~600 nm with a low polydispersity index of 0.2. PolyRad and free melatonin (control) were irradiated by UV light after being exposed to a strong oxidant, hydrogen peroxide (HO). Bare melatonin lost ~80% of the active structure of the drug following irradiation with UV light or treatment with HO. In contrast, PolyRad protected >80% of the active structure of melatonin. The ability of PolyRad to protect melatonin structure was also carried out using 0, 1, 5 and 10 Gy gamma radiation. Gamma irradiation showed >98% active structures of melatonin encapsulated in PolyRads. Drug release and effectiveness of melatonin using PolyRad were evaluated on human umbilical vein endothelial cells (HUVEC) in vitro. Non-irradiated PolyRad demonstrated maximum drug release of ~70% after 72 h, while UV-irradiated and HO-treated PolyRad showed a maximum drug release of ~85%. Cytotoxicity of melatonin was carried out using both live/dead and MTT assays. Melatonin, non-radiated PolyRad and irradiated PolyRad inhibited the viability of HUVEC in a dose-dependent manner. Cell viability of melatonin, PolyRad alone without melatonin (PolyRad carrier control), non-radiated PolyRad, and irradiated PolyRad were ~98, 87, 75 and 70%, respectively at a concentration [Formula: see text] 0.01 [Formula: see text] ([Formula: see text]). Taken together, PolyRad nanoparticle provides an attractive formulation platform for preventing damage to pharmaceutical drugs in potential space mission applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239908PMC
http://dx.doi.org/10.1038/s41598-020-65247-yDOI Listing

Publication Analysis

Top Keywords

polyrad
16
drug release
12
melatonin polyrad
12
[formula text]
12
melatonin
11
free radical
8
develop novel
8
active structure
8
maximum drug
8
non-radiated polyrad
8

Similar Publications

Discovery and analysis of genetic variants underlying agriculturally important traits are key to molecular breeding of crops. Reduced representation approaches have provided cost-efficient genotyping using next-generation sequencing. However, accurate genotype calling from next-generation sequencing data is challenging, particularly in polyploid species due to their genome complexity.

View Article and Find Full Text PDF

Background: Genotyping-by-sequencing (GBS) provides affordable methods for genotyping hundreds of individuals using millions of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the bias generated by polymerase chain reaction duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from regular meiosis.

View Article and Find Full Text PDF

The Conservation Genetics of (Dwarf Lake Iris), a Great Lakes Endemic.

Plants (Basel)

July 2023

E.S. Witchger School of Engineering, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222-1997, USA.

, a northern Great Lakes endemic, is a rare species known from 165 occurrences across Lakes Michigan and Huron in the United States and Canada. Due to multiple factors, including habitat loss, lack of seed dispersal, patterns of reproduction, and forest succession, the species is threatened. Early population genetic studies using isozymes and allozymes recovered no to limited genetic variation within the species.

View Article and Find Full Text PDF

Background: Given the economic and environmental importance of allopolyploids and other species with highly duplicated genomes, there is a need for methods to distinguish paralogs, i.e. duplicate sequences within a genome, from Mendelian loci, i.

View Article and Find Full Text PDF

The effects of elevated levels of radiation contribute to the instability of pharmaceutical formulations in space compared to those on earth. Existing technologies are ineffective at maintaining the therapeutic efficacies of drugs in space. Thus, there is an urgent need to develop novel space-hardy formulations for preserving the stability and efficacy of drug formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!