Developing advanced electrode materials for potassium-ion batteries (PIBs) is an emerging research area in recent years; so far, several strategies such as heteroatom doping into carbon, increasing interlayer spacing, or creating amorphous region in graphite have been investigated. Here, we studied the effect of sub-nanopores in a porous-carbon aerogel with a pore size distribution centered at around 0.8 nm and achieved outstanding PIB performance including long cycling stability (particularly at small current densities for prolonged charge/discharge period) and high rate capability with enhanced retentions. Mechanism studies reveal very high contribution from surface capacitive potassium (K)-ion storage (more than 90%) to the total capacity, and theoretical calculations show that 0.8 nm sub-nanopores lead to substantially low barrier for K-ion transport and storage, with ultrasmall diffusion energy and negligible lattice change. Sub-nanopore engineering, as demonstrated here, may be adopted to develop highly efficient and stable porous-carbon-based structures for applications in advanced energy storage systems and electrochemical catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c03730DOI Listing

Publication Analysis

Top Keywords

cycling stability
8
rate capability
8
porous-carbon aerogels
4
aerogels tailored
4
tailored sub-nanopores
4
sub-nanopores high
4
high cycling
4
stability rate
4
capability potassium-ion
4
potassium-ion battery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!