A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physicochemical and antibacterial properties of fabricated ovalbumin-carvacrol gel nanoparticles. | LitMetric

Physicochemical and antibacterial properties of fabricated ovalbumin-carvacrol gel nanoparticles.

Food Funct

Postdoctoral Mobile Station of Biology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China. and Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou 225001, Jiangsu, China.

Published: June 2020

The applications of carvacrol are limited due to its poor stability and water solubility, and high volatility; however, ovalbumin can be used to encapsulate hydrophobic molecules, improve their aqueous solubility, and reduce their volatility. In this study, we fabricated ovalbumin-carvacrol nanoparticles (OCGns) under different pH (2, 5, 7, and 9) conditions using a gel embedding method and investigated their physicochemical and antibacterial properties. Rheological experiments revealed that the G' of ovalbumin gels (OGs) prepared under different pH conditions were OG-2 > OG-7 > OG-9 > OG-5. Carvacrol addition reduced the tight structure of ovalbumin and carvacrol under pH 5 and 7 conditions, with hardness first decreasing and then increasing, but increasing under pH 2 and 9 conditions. Fluorescence and infrared spectroscopy indicated complex formation, with carvacrol increasing the average diameter of nanoparticles prepared at pH 2, 5, 7, and 9. Encapsulation reached 89.34 and 91.86% at pH 2 and 9, respectively; however, inhibition experiments revealed that the minimum inhibitory concentration of OCGn-2 against Gram-positive Bacillus cereus and Salmonella (0.08 and 0.16 mg mL-1, respectively) was lower than that of OCGn-9 (both 0.28 mg mL-1). Moreover, OCGn-2 possessed a better dense gel structure and a higher stability, encapsulation rate, and antibacterial activity, suggesting that pH affects gel microstructure and thus the encapsulation efficiency and bacteriostatic properties of the prepared nanoparticles. These results contribute to our knowledge of the design and fabrication of polymeric nanoparticle delivery systems for bioactive compounds with beneficial properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0fo00755bDOI Listing

Publication Analysis

Top Keywords

physicochemical antibacterial
8
antibacterial properties
8
fabricated ovalbumin-carvacrol
8
experiments revealed
8
properties
4
properties fabricated
4
gel
4
ovalbumin-carvacrol gel
4
nanoparticles
4
gel nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!