High levels of stress during pregnancy increase the chances of having a premature or low-birthweight baby. Perceived self-reported stress does not often capture or align with the physiological and behavioral response. But what if there was a self-report measure that could better capture the physiological response? Current perceived stress self-report assessments require users to answer multi-item scales at different time points of the day. Reducing it to one question, using microinteraction-based ecological momentary assessment (micro-EMA, collecting a single self-report to assess behaviors) allows us to identify smaller or more subtle changes in physiology. It also allows for more frequent responses to capture perceived stress while at the same time reducing burden on the participant. We propose a framework for selecting the optimal micro-EMA that combines unbiased feature selection and unsupervised Agglomerative clustering. We test our framework in 18 women performing 16 activities in-lab wearing a Biostamp, a NeuLog, and a Polar chest strap. We validated our results in 17 pregnant women in real-world settings. Our framework shows that the question "How worried were you?" results in the highest accuracy when using a physiological model. Our results provide further in-depth exposure to the challenges of evaluating stress models in real-world situations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236910PMC
http://dx.doi.org/10.1145/3351249DOI Listing

Publication Analysis

Top Keywords

perceived stress
8
stress
6
micro-stress ema
4
ema passive
4
passive sensing
4
framework
4
sensing framework
4
framework detecting
4
detecting in-the-wild
4
in-the-wild stress
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!