Genetic diversity is the determinant for pest species' success and vector competence. Understanding the ecological and evolutionary processes that determine the genetic diversity is fundamental to help identify the spatial scale at which pest populations are best managed. In the present study, we present the first comprehensive analysis of the genetic diversity and evolution of , a major pest of cereals and a main vector of the barley yellow dwarf virus (BYDV), in England. We have used a genotyping-by-sequencing approach to study whether (a) there is any underlying population genetic structure at a national and regional scale in this pest that can disperse long distances; (b) the populations evolve as a response to environmental change and selective pressures; and (c) the populations comprise anholocyclic lineages. Individual were collected using the Rothamsted Insect Survey's suction-trap network at several sites across England between 2004 and 2016 as part of the RIS long-term nationwide surveillance. Results identified two genetic clusters in England that mostly corresponded to a North-South division, although gene flow is ongoing between the two subpopulations. These genetic clusters do not correspond to different life cycle types, and cyclical parthenogenesis is predominant in England. Results also show that there is dispersal with gene flow across England, although there is a reduction between the northern and southern sites with the south-western population being the most genetically differentiated. There is no evidence for isolation by distance and other factors such as primary host distribution, uncommon in the south and absent in the south-west, could influence the dispersal patterns. Finally, results also show no evidence for the evolution of the population, and it is demographically stable despite the ongoing environmental change. These results are discussed in view of their relevance to pest management and the transmission of BYDV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232763 | PMC |
http://dx.doi.org/10.1111/eva.12917 | DOI Listing |
BMC Res Notes
January 2025
Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.
Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.
View Article and Find Full Text PDFMicrobiome
January 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
Background: The emergence of new molecular targeted drugs marks a breakthrough in asthma treatment, particularly for severe cases. Yet, options for moderate-to-severe asthma treatment remain limited, highlighting the urgent need for novel therapeutic drug targets. In this study, we aimed to identify new treatment targets for asthma using the Mendelian randomization method and large-scale genome-wide association data (GWAS).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.
Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.
BMC Plant Biol
January 2025
Chengdu Botanical Garden, Chengdu Park Urban Plant Science Research Institute, Chengdu, 610083, Sichuan, China.
Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!