Endocrine Disruptors and Polycystic Ovary Syndrome: Phthalates.

J Clin Res Pediatr Endocrinol

Erciyes University Faculty of Medicine, Department of Biochemistry, Kayseri; İzmir Kâtip Çelebi University, Department of Medical Biochemistry, İzmir, Turkey

Published: November 2020

Objective: We aimed to investigate a possible role of the endocrine disruptors phthalates, di-2-ethylhexyl phthalate (DEHP) and mono (2-ethylhexyl) phthalate (MEHP), in polycystic ovary syndrome (PCOS) aetiopathogenesis. We also wished to evaluate the relationship between phthalates and metabolic disturbances in adolescents with PCOS.

Methods: A total of 124 adolescents were included. Serum MEHP and DEHP levels were determined by high-performance liquid chromatography. Insulin resistance was evaluated using homeostasis model assessment-insulin resistance, quantitative Insulin Sensitivity Check Index, fasting glucose/insulin ratio, Matsuda index, and total insulin levels during oral glucose tolerance test. Participants were further subdivided into lean and obese subgroups according to body mass index (BMI).

Results: Sixty-three PCOS and 61 controls, (mean age 15.2±1.5; range: 13-19 years) were enrolled. Serum DEHP and MEHP concentrations were not significantly different between PCOS and control groups. The mean (95% confidence interval) values of DEHP and MEHP were 2.62 (2.50-2.75) μg/mL vs 2.71 (2.52-2.90) μg/mL and 0.23 (0.19-0.29) μg/mL vs 0.36 (0.18-0.54) μg/mL in PCOS and the control groups respectively, p>0.05. Correlation analysis, adjusted for BMI, showed that both phthalates significantly correlated with insulin resistance indices and serum triglycerides in adolescents with PCOS.

Conclusion: Serum DEHP and MEHP concentrations were not different between adolescents with or without PCOS. However, these phthalates are associated with metabolic disturbances such as dyslipidemia and insulin resistance, independently of obesity, in girls with PCOS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711640PMC
http://dx.doi.org/10.4274/jcrpe.galenos.2020.2020.0037DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
dehp mehp
12
endocrine disruptors
8
polycystic ovary
8
ovary syndrome
8
metabolic disturbances
8
serum dehp
8
mehp concentrations
8
pcos control
8
control groups
8

Similar Publications

Background: The association between serum uric acid (SUA) and dyslipidaemia is still unclear in patients with type 2 diabetes mellitus (T2DM). This study aimed to examine the association between SUA and dyslipidaemia and to explore whether there is an optimal SUA level corresponding to the lower risk of suffering from dyslipidaemia.

Research Design And Methods: This cross-sectional study included 1036 inpatients with T2DM and the clinical data were extracted from the hospital medical records.

View Article and Find Full Text PDF

The growing range of complications of diabetes mellitus.

Trends Endocrinol Metab

January 2025

School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.

With the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity, several previously under-recognised complications associated with T2DM are becoming more evident. The most common of these emerging complications are metabolic dysfunction-associated steatotic liver disease (MASLD), cancer, dementia, sarcopenia, and frailty, as well as other conditions involving the lung, heart, and intestinal tract. Likely causative factors are chronic inflammation and insulin resistance, whereas blood glucose levels appear to play a lesser role.

View Article and Find Full Text PDF

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

Statins and non-alcoholic fatty liver disease: A concise review.

Biomed Pharmacother

January 2025

Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.

Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging.

View Article and Find Full Text PDF

Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors.

Neurosci Bull

January 2025

Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.

Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!