Continuous "Snowing" Thermotherapeutic Graphene.

Adv Mater

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

Published: July 2020

Finding the best applications of graphene, and the continuous and scalable preparation of graphene with high quality and high purity, are still two major challenges. Herein, a "pulse-etched" microwave-induced "snowing" (PEMIS) process is developed for continuous and scalable preparation of high-quality and high-purity graphene directly in the gas phase, which is found to have excellent thermotherapeutic effects. The obtained graphene exhibits small size (≈180 nm), high quality, low oxygen content, and high purity, together with a high gas-solid conversion efficiency of ≈10.46%. Considering the intrinsic characteristics of this high-purity and small-sized biocompatible graphene, in particular the low-frequency microwave absorption property as well as the good thermal transformation ability, a graphene-based combination therapeutic system is demonstrated for microwave thermal therapy (MTT) for the first time, exhibiting a high tumor ablation rate of ≈86.7%. This is different from the principle of ions vibrating in a confined space used by current MTT sensitization materials. Not limited to this application, it is foreseen that this PEMIS-based high-quality graphene will allow the search for further suitable applications of graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202002024DOI Listing

Publication Analysis

Top Keywords

graphene
8
applications graphene
8
continuous scalable
8
scalable preparation
8
high quality
8
high purity
8
high
6
continuous "snowing"
4
"snowing" thermotherapeutic
4
thermotherapeutic graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!