Most biological neurons exhibit stochastic and spiking action potentials. However, the benefits of stochastic spikes versus continuous signals other than noise tolerance and energy efficiency remain largely unknown. In this study, we provide an insight into the potential roles of stochastic spikes, which may be beneficial for producing on-site adaptability in biological sensorimotor agents. We developed a platform that enables parametric modulation of the stochastic and discontinuous output of a stochastically spiking neural network (sSNN) to the rate-coded smooth output. This platform was applied to a complex musculoskeletal-neural system of a bipedal walker, and we demonstrated how stochastic spikes may help improve on-site adaptability of a bipedal walker to slippery surfaces or perturbation of random external forces. We further applied our sSNN platform to more general and simple sensorimotor agents and demonstrated four basic functions provided by an sSNN: 1) synchronization to a natural frequency, 2) amplification of the resonant motion in a natural frequency, 3) basin enlargement of the behavioral goal state, and 4) rapid complexity reduction and regular motion pattern formation. We propose that the benefits of sSNNs are not limited to musculoskeletal dynamics. Indeed, a wide range of the stability and adaptability of biological systems may arise from stochastic spiking dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275765 | PMC |
http://dx.doi.org/10.1073/pnas.1819707117 | DOI Listing |
Nat Genet
January 2025
Department of Statistics, University of Oxford, Oxford, UK.
The rapid growth of modern biobanks is creating new opportunities for large-scale genome-wide association studies (GWASs) and the analysis of complex traits. However, performing GWASs on millions of samples often leads to trade-offs between computational efficiency and statistical power, reducing the benefits of large-scale data collection efforts. We developed Quickdraws, a method that increases association power in quantitative and binary traits without sacrificing computational efficiency, leveraging a spike-and-slab prior on variant effects, stochastic variational inference and graphics processing unit acceleration.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Whitman College, Walla Walla, WA, 99362, USA.
In a complex dynamical system, noise, feedback, and external forces shape behavior that can range from regularity to high-dimensional chaos. Multiple feedback sources can significantly alter its dynamics, potentially even suppressing the system's output. This study investigates the impact of competing feedback sources on a stochastic complex dynamical system using a photonic neuron-a diode laser with external optical feedback.
View Article and Find Full Text PDFNeural Comput
January 2025
Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200437, China
Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificial neural networks, which produce results in a single step, SNNs require multiple steps during inference to achieve a desired accuracy level, resulting in a burden in real-time response and energy efficiency. Inspired by the tradeoff between speed and accuracy in human and animal decision-making processes, which exhibit correlations among reaction times, task complexity, and decision confidence, an inquiry emerges regarding how an SNN model can benefit by implementing these attributes.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Communication Science Laboratories, NTT Corporation, Kyoto, Japan.
Spike train modeling across large neural populations is a powerful tool for understanding how neurons code information in a coordinated manner. Recent studies have employed marked point processes in neural population modeling. The marked point process is a stochastic process that generates a sequence of events with marks.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
Nanopore technology holds great potential for single-molecule identification. However, extracting meaningful features from ionic current signals and understanding the molecular mechanisms underlying the specific features remain unresolved. In this study, we uncovered a distinctive ionic current pattern in a K238Q aerolysin nanopore, characterized by transient spikes superimposed on two stable transition states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!