In humans, γ oscillations in cortical motor areas reflect asynchronous synaptic activity and contribute to plasticity processes. In Parkinson's disease (PD), γ oscillatory activity in the basal ganglia-thalamo-cortical network is altered and the LTP-like plasticity elicited by intermittent theta burst stimulation (iTBS) is reduced in the primary motor cortex (M1). In this study, we tested whether transcranial alternating current stimulation (tACS) delivered at γ frequency promotes iTBS-induced LTP-like plasticity in M1 in PD patients. Sixteen patients (OFF condition) and 16 healthy subjects (HSs) underwent iTBS during γ-tACS (iTBS-γ tACS) and during sham-tACS (iTBS-sham tACS) in two sessions. Motor-evoked potentials (MEPs) evoked by single-pulse transcranial magnetic stimulation and short-interval intracortical inhibition (SICI) were recorded before and after the costimulation. A subgroup of patients also underwent iTBS during β tACS. iTBS-sham tACS facilitated single-pulse MEPs in HSs, but not in patients. iTBS-γ tACS induced a larger MEP facilitation than iTBS-sham tACS in both groups, with similar values in patients and HSs. In patients, SICI improved after iTBS-γ tACS. The effect produced by iTBS-γ tACS on single-pulse MEPs correlated with disease duration, while changes in SICI correlated with Unified Parkinson's Disease Rating Scale Part III scores. The effect of iTBS-β tACS on both single-pulse MEPs and SICI was similar to that obtained in the iTBS-sham tACS session. Our data suggest that γ oscillations have a role in the pathophysiology of the abnormal LTP-like plasticity in PD. Entraining M1 neurons at the γ rhythm through tACS may be an effective method to restore impaired plasticity. In Parkinson's disease, the LTP-like plasticity of the primary motor cortex is impaired, and γ oscillations are altered in the basal ganglia-thalamo-cortical network. Using a combined transcranial magnetic stimulation-transcranial alternating current stimulation approach (iTBS-γ tACS costimulation), we demonstrate that driving γ oscillations restores the LTP-like plasticity in patients with Parkinson's disease. The effects correlate with clinical characteristics of patients, being more evident in less affected patients and weaker in patients with longer disease duration. These findings suggest that cortical γ oscillations play a beneficial role in modulating the LTP-like plasticity of M1 in Parkinson's disease. The iTBS-γ tACS approach may be potentially useful in rehabilitative settings in patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294804 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0357-20.2020 | DOI Listing |
Sci Rep
December 2024
Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands.
The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.
View Article and Find Full Text PDFNat Commun
December 2024
Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA.
Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Introduction: Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition.
Methods: We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5).
Results: There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!