Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Surgical treatment of sacral fractures is difficult, both for reduction and stabilization. Traditional surgical reduction and internal fixation require a long duration of operation leading to extra blood loss, extensive tissue damage, and increased risk of post-operation complications. The purpose of this study was to evaluate the feasibility of a minimally invasive technique that could be more effective, more tissue sparing, and lead to less bleeding. We hypothesized that a Pararectus approach for anterior fixation of unstable sacral fractures would be reliable and more advantageous and significantly improve the outcome of sacral fracture repair.
Methods: Twelve patients with unstable sacral fractures were recruited and examined by CT scanning. A 3D model of each sacral fracture was reconstructed. The computer-assisted 3D image of the reduced pelvis was 3D printed for surgery simulation and plate pre-bending. All cases were treated operatively with the anterior anatomical reduction and internal fixation via a minimally invasive Pararectus approach. VAS, Matta, and Majeed scores were used to evaluate outcomes of the operation.
Results: Pre-operations were consistent with the actual surgeries in all cases. The pre-bent plates had an anatomical shape specifically fit to the individual pelvis without further adjustment at the time of surgery, and fracture reductions were significantly improved with little invasive tissue damage. The average operation time was 110 min. The intraoperative blood loss and incision length averaged 695 ml and 6.7 cm, respectively. A high percentage of all cases achieved a diaplasis with an excellent or good score according to the Matta and Majeed standards (83.33% and 91.67%, respectively).All patients achieved clinical healing with an average healing time of 8 weeks.
Conclusion: 3D printing-assisted anterior fixation of unstable sacral fractures via a minimally invasive Pararectus approach is feasible. This new surgical strategy minimizes trauma damage and bleeding and produces satisfactory reduction and therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.injury.2020.03.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!