This work proposes to improve the accuracy of joint angle estimates obtained from an RGB-D sensor. It is based on a constrained extended Kalman Filter that tracks inputted measured joint centers. Since the proposed approach uses a biomechanical model, it allows physically consistent constrained joint angles and constant segment lengths to be obtained. A practical method that is not sensor-specific for the optimal tuning of the extended Kalman filter covariance matrices is provided. It uses reference data obtained from a stereophotogrammetric system but it has to be tuned only once since it is task-specific only. The improvement of the optimal tuning over classical methods in setting the covariance matrices is shown with a statistical parametric mapping analysis. The proposed approach was tested with six healthy subjects who performed four rehabilitation tasks. The accuracy of joint angle estimates was assessed with a reference stereophotogrammetric system. Even if some joint angles, such as the internal/external rotations, were not well estimated, the proposed optimized algorithm reached a satisfactory average root mean square difference of 9.7 ∘ and a correlation coefficient of 0.8 for all joints. Our results show that an affordable RGB-D sensor can be used for simple in-home rehabilitation when using a constrained biomechanical model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288061PMC
http://dx.doi.org/10.3390/s20102848DOI Listing

Publication Analysis

Top Keywords

rgb-d sensor
12
physically consistent
8
accuracy joint
8
joint angle
8
angle estimates
8
extended kalman
8
kalman filter
8
proposed approach
8
biomechanical model
8
joint angles
8

Similar Publications

With the decreasing and aging agricultural workforce, fruit harvesting robots equipped with higher degrees of freedom (DoF) manipulators are seen as a promising solution for performing harvesting operations in unstructured and complex orchard environments. In such a complex environment, guiding the end-effector from its starting position to the target fruit while avoiding obstacles poses a significant challenge for path planning in automatic harvesting. However, existing studies often rely on manually constructed environmental map models and face limitations in planning efficiency and computational cost.

View Article and Find Full Text PDF

Cascaded Feature Fusion Grasping Network for Real-Time Robotic Systems.

Sensors (Basel)

December 2024

College of Engineering, Huaqiao University, Quanzhou 362021, China.

Grasping objects of irregular shapes and various sizes remains a key challenge in the field of robotic grasping. This paper proposes a novel RGB-D data-based grasping pose prediction network, termed Cascaded Feature Fusion Grasping Network (CFFGN), designed for high-efficiency, lightweight, and rapid grasping pose estimation. The network employs innovative structural designs, including depth-wise separable convolutions to reduce parameters and enhance computational efficiency; convolutional block attention modules to augment the model's ability to focus on key features; multi-scale dilated convolution to expand the receptive field and capture multi-scale information; and bidirectional feature pyramid modules to achieve effective fusion and information flow of features at different levels.

View Article and Find Full Text PDF

Lightweight Two-Layer Control Architecture for Human-Following Robot.

Sensors (Basel)

December 2024

Department of Computer and Decision Sciences, Faculty of Mines, Universidad Nacional de Colombia, Medellín 050034, Colombia.

(1) Background: Human detection and tracking are critical tasks for assistive autonomous robots, particularly in ensuring safe and efficient human-robot interaction in indoor environments. The increasing need for personal assistance among the elderly and people with disabilities has led to the development of innovative robotic systems. (2) Methods: This research presents a lightweight two-layer control architecture for a human-following robot, integrating a fuzzy behavior-based control system with low-level embedded controllers.

View Article and Find Full Text PDF

Action recognition based on 3D heatmap volumes has received increasing attention recently because it is suitable for application to 3D CNNs to improve the recognition performance of deep networks. However, it is difficult for models to capture global dependencies due to their restricted receptive field. To effectively capture long-range dependencies and balance computations, a novel model, PoseTransformer3D with Global Cross Blocks (GCBs), is proposed for pose-based action recognition.

View Article and Find Full Text PDF

Focusing on the issue of the low recognition rates achieved by traditional deep-information-based action recognition algorithms, an action recognition approach was developed based on skeleton spatial-temporal and dynamic features combined with a two-stream convolutional neural network (TS-CNN). Firstly, the skeleton's three-dimensional coordinate system was transformed to obtain coordinate information related to relative joint positions. Subsequently, this relevant joint information was encoded as a color texture map to construct the spatial-temporal feature descriptor of the skeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!